Closed-form exact solutions for thick bi-directional functionally graded circular beams

2019 ◽  
Vol 15 (1) ◽  
pp. 79-102 ◽  
Author(s):  
Anup Pydah ◽  
Aditya Sabale

PurposeThere exists a clear paucity of models for curved bi-directional functionally graded (BDFG) beams wherein the material properties vary along the axis and thickness of the beam simultaneously; such structures may help fulfil practical design requirements of the future and improve structural efficiency. In this context, the purpose of this paper is to extend the analytical model developed earlier to thick BDFG circular beams by using first-order shear deformation theory which allows for a non-zero shear strain distribution through the thickness of the beam.Design/methodology/approachSmooth functional variations of the material properties have been assumed along the axis and thickness of the beam simultaneously. The governing equations developed have been solved analytically for some representative determinate circular beams. In order to ascertain the effects of shear deformation in these structures, the total strain energy has been decomposed into its bending and shear components and the effects of the beam thickness and the arch angle on the shear energy component have been studied.FindingsClosed-form exact solutions involving through-the-thickness integrals carried out numerically are presented for the bending of circular beams under the action of a variety of concentrated/distributed loads.Originality/valueThe results clearly indicate the importance of capturing shear deformation in thick BDFG beams and demonstrate the capability of tuning the response of these beams to fit a wide variety of structural requirements.

2020 ◽  
Vol 4 (4) ◽  
pp. 158 ◽  
Author(s):  
Chih-Ping Wu ◽  
Zhan-Rong Xu

The strong and weak formulations of a mixed layer-wise (LW) higher-order shear deformation theory (HSDT) are developed for the static analysis of functionally graded (FG) beams under various boundary conditions subjected to thermo-mechanical loads. The material properties of the FG beam are assumed to obey a power-law distribution of the volume fractions of the constituents through the thickness of the FG beam, for which the effective material properties are estimated using the rule of mixtures, or it is directly assumed that the effective material properties of the FG beam obey an exponential function distribution along the thickness direction of the FG beam. The results shown in the numerical examples indicate that the mixed LW HSDT solutions for elastic and thermal field variables are in excellent agreement with the accurate solutions available in the literature. A parametric study related to various effects on the coupled thermo-mechanical behavior of FG beams is carried out, including the aspect ratio, the material-property gradient index, and different boundary conditions.


2004 ◽  
Vol 261-263 ◽  
pp. 609-614 ◽  
Author(s):  
L.S. Ma ◽  
Tie Jun Wang

Based on the first-order shear deformation theory of plate, governing equations for the axisymmetric buckling of functionally graded circular/annular plates are derived. The coupled deflections and rotations in the pre-buckling state of the plates are neglected in analysis. The material properties vary continuously through the thickness of the plate, and obey a power law distribution of the volume fraction of the constituents. The resulting differential equations are numerically solved by using a shooting method. The critical buckling loads of circular and annular plates are obtained, which are compared with those obtained from the classical plate theory. Effects of material properties, ratio of inter to outer radius, ratio of plate thickness to outer radius, and boundary conditions on the buckling behavior of FGM plates are discussed.


Author(s):  
P. Ghaderi ◽  
A. Fathizadeh ◽  
M. Bankehsaz

In this paper a semi-analytical method is developed to analyze functionally graded cylindrical panels. In this method, the radial domain is divided into some finite sub-domains and the material properties are assumed to be constant in each subdomain. Imposing the continuity conditions at the interface of the adjacent sub-domains, together with the global boundary conditions, a set of linear algebraic equations are derived. Solving the linear algebraic equations, the elastic response for the thick-walled FG cylindrical panel is obtained. The method can be used for all material properties variations but in present study, material properties are assumed vary with Mori-Tanaka estimation. Results are compared with the first order shear deformation theory and third order shear deformation theory of Reddy and accuracy of these theories in assessed for FG cylindrical panels with different aspect ratios.


2019 ◽  
Vol 15 (1) ◽  
pp. 26-49 ◽  
Author(s):  
Smita Parida ◽  
Sukesh Chandra Mohanty

Purpose The purpose of this paper is to investigate the linear and non-linear free vibration of a functionally graded material (FGM) rotating cantilever plate in the thermal environment. The study employs the development of a non-linear mathematical model using the higher order shear deformation theory in which the traction free condition is applied to derive the simplified displacement model with seven field variables instead of nine. Design/methodology/approach A mathematical model is developed based on the higher order shear deformation theory using von-Karman type non-linearity. The rotating plate domain has been discretized into C0 eight-noded quadratic serendipity elements with node wise 7 degrees of freedom. The material properties are considered temperature dependent and graded along the thickness direction obeying a simple power law distribution in terms of the volume fraction of constituents, based on Voigt’s micromechanical method. The governing equations are derived using Hamilton’s principle and are solved using the direct iterative method. Findings The importance of the present mathematical model developed for numerical analysis has been stated through the comparison studies. The results provide an insight into the vibration response of FGM rotating plate under thermal environment. The influence of various parameters like setting angle, volume fraction index, hub radius, rotation speed parameter, aspect ratio, side-thickness ratio and temperature gradient on linear and non-linear frequency parameters is discussed in detail. Originality/value A non-linear mathematical model is newly developed based on C0 continuity for the functionally graded rotating plate considering the 1D Fourier equation of heat conduction. The present findings can be utilized for the design of rotating plates made up of a FGM in the thermal environment under real-life situations.


2015 ◽  
Vol 11 (4) ◽  
pp. 558-578 ◽  
Author(s):  
Mokhtar Bouazza ◽  
Noureddine Benseddiq

Purpose – The purpose of this paper is to investigate an analytical modeling for the thermoelastic buckling behavior of functionally graded (FG) rectangular plates (FGM) under thermal loadings. The material properties of FGM are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Derivations of equations are based on novel refined theory using a new hyperbolic shear deformation theory. Unlike other theories, there are only four unknown functions involved, as compared to five in other shear deformation theories. The theory presented is variationally consistent and strongly similar to the classical plate theory in many aspects. It does not require the shear correction factor, and gives rise to the transverse shear stress variation so that the transverse shear stresses vary parabolically across the thickness to satisfy free surface conditions for the shear stress. In addition, numerical results for a variety of FG plates with simply supported edge are presented and compared with those available in the literature. Moreover, the effects of geometrical parameters of dimension the length to width aspect ratio (a/b), the plate width to thickness ratio (b/h), and material properties index (k) on the FGM buckling temperature difference are determined and discussed. Design/methodology/approach – In the current paper, the application of the refined theory proposed by Shimpi is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. It is extended to the analysis of buckling behavior of ceramic-metal FG plates subjected to the three types of thermal loadings, namely; uniform temperature rise, linear temperature change across the thickness, and nonlinear temperature change across the thickness. The material properties of the FG plates are assumed to vary continuously through the thickness of the plate, according to the simple power-law distribution. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results, wherever possible. Additionally, the effects of geometrical parameters and material properties on the buckling temperature difference of FGM plates are determined and discussed. Findings – Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power-law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Originality/value – To the best of the authors’ knowledge, there are no research works for thermal buckling analysis of FG rectangular plates based on new four-variable refined plate theory (RPT). The novelty of this paper is extended the use of the above-mentioned RPT with the addition of a new function proposed by Shimpi for thermal buckling analysis of plates made of FG materials. Unlike any other theory, the number of unknown functions involved is only four, as against five in the case of other shear deformation theories. The theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. The plates subjected to the two types of thermal loadings, namely; uniform temperature rise and nonlinear temperature change across the thickness. Numerical results for a variety of FG plates with simply supported edges are given and compared with the available results.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Nguyen Van Dang

Beam-shaped components in large mechanical structures such as propellers, gas turbine blades, engine turbines, rotating railway bridges, and so on, when operating, usually engage in rotational movement around the fixed axis. Studying the mechanical behavior of these structures has great significance in engineering practice. Therefore, this paper is the first investigation on the static bending of rotating functionally graded material (FGM) beams with initial geometrical imperfections in thermal environments, where the higher-order shear deformation theory and the finite element method (FEM) are exercised. The material properties of beams are assumed to be varied only in the thickness direction and changed by the temperature effect, which increases the correctness and proximity to technical reality. The numerical results of this work are compared with those of other published papers to evaluate the accuracy of the proposed theory and mechanical model used in this paper. A series of parameter studies is carried out such as geometrical and material properties, especially the rotational speed and temperature, to evaluate their influences on the bending responses of structures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Supen Kumar Sah ◽  
Anup Ghosh

Purpose The purpose of this paper is to carry out free vibration and buckling analysis of functionally graded material (FGM) plate. Design/methodology/approach Equilibrium and stability equations of FGM rectangular plate under different boundary conditions are derived using finite element method-based inverse trigonometric shear deformation theory (ITSDT). Eight-noded rectangular plate element with seven degrees of freedom at each node is used for the present analysis. The power-law distribution method has been considered for the continuously graded variation in composition of the ceramic and metal phases across the thickness of a functionally graded plate. Findings The finite element formulation incorporated with ITSDT and provisions of the constitutive model of FGM plate has been implemented in a numerical code to obtain the natural frequency and critical buckling load under uniaxial and biaxial compressive load. The influence of material gradation, volume fraction index, span to thickness ratio and boundary constraints over free vibration and buckling response has been studied. Originality/value Development and validation of finite element methodology using ITSDT to predict the structural response of the FGM plates under different loading, geometric and boundary conditions.


Author(s):  
Nadiia Dergachova ◽  
Guangping Zou ◽  
Zhongliang Chang

In this article, we present an analytical solution for an imperfect functionally graded plate based on higher order shear deformation theory with cubic variation of in-plane displacements according to thickness and linear/quadratic transverse displacement. The developed solution is used to analyze the static responses of a plate with a porous layer to mechanical loading. Two porosity types and their influences on material properties, displacement, and stress behaviors are considered. The network of pores is assumed to be empty or filled with low-pressure air, and the material properties are calculated using power-law distribution idealization in terms of the volume fractions of constituents. The computed results are presented to illustrate the accuracy of the proposed solutions based on comparisons to previously reported analytical and numerical solutions in the literature. We also analyzed the effects of different volume fractions and thicknesses of porous layers on the mechanical loading and mechanical behavior of the imperfect functionally graded plate.


Author(s):  
Vu Thi An Ninh ◽  
Le Thi Ngoc Anh ◽  
Nguyen Dinh Kien

A two-dimensional functionally graded sandwich (2D-FGSW) beam model\break formed from three constituent materials is proposed and its free vibration is studied for the first time. The beam consists of three layers, a homogeneous core and two functionally graded skin layers with material properties varying in both the length and thickness directions by power gradation laws. Based on a third-order shear deformation theory, a beam element using the transverse shear rotation as an independent variable is formulated and employed in the study.  The obtained numerical result reveals that the variation of the material properties in the length direction plays an important role on the natural frequencies and vibration modes  of the beam. The effects of the material distribution and layer thickness ratio on the vibration characteristics are investigated in detail. The influence of the aspect ratio on the frequencies is also examined and discussed.


Sign in / Sign up

Export Citation Format

Share Document