Sustainable processing of Inconel 718 super alloy in electrical discharge machining process

2020 ◽  
Vol 17 (5) ◽  
pp. 687-695
Author(s):  
Ruben Phipon ◽  
Ishwer Shivakoti ◽  
Ashis Sharma

Purpose This paper aims to present the performance of deionized water in electrical discharge machining (EDM) during machining of Inconel 718, copper tool electrode and deionized water as dielectric. Three parameters, namely, pulse-on-time, pulse-off-time and discharge current were taken as control parameters with individual parameter having three levels. Influence of these control parameters on response such as tool wear rate (TWR), material removal rate (MRR) and surface roughness (Ra) is evaluated at various combinations of parametric levels. The results reveal deionized water can be effectively used as a sustainable dielectric and may substitute the hydrocarbon-based dielectric in electrical discharge machining. Also, the control parameters considered show significant impact on the process criteria. Super ranking method was adopted to achieve optimal integration of EDM control factors for obtaining higher MRR, lower TWR and Ra. Further, by applying analysis of variance test, discharge current is established as the dominant parameter during the machining process. Design/methodology/approach The experimentation was performed on Inconel 718 in SPARKONIX MOS, 35 A, ZNC EDM using deionized water as dielectric and copper tool as electrode. The dielectric circulatory system was developed without disturbing the existing dielectric circulation system. Figure 1 shows the EDM with newly developed dielectric system. The existing system consists of hydrocarbon-based dielectric, which has a number of drawbacks during the machining such as carbide deposition on the work material, which reduces removal of material from work material; carbon particle adhesion on tool, which results in inefficient discharge between the electrode; and the work material and production of CO and CH4 during machining, which makes the machining environment toxic. To overcome these drawbacks, a sustainable dielectric was adopted in present work. Trial experiments were conducted to select the ranges of parameters, namely, discharge current, pulse-on-time and pulse-off-time. The process characteristics were evaluated at different parametric combinations and the experimentation was designed as per Taguchi L9 orthogonal array. Table 1 shows the properties of Inconel 718. Table 2 shows the parameters considered with its ranges. Table 3 shows the experimental values. The difference of weight of work piece before and after was taken and divided by the machining time used for calculating the MWR. Similarly, the difference of weight of tool material before and after was taken and divided by machining time and is used for calculating TWR. Measurement of surface roughness was done using Talysurf surface roughness meter. Findings The experimentation was conducted at different parametric combination on Inconel 718 taking copper as electrode and deionized water as dielectric. The performance criteria was evaluated at considered parametric combination. The result shows that the EDM parameters have significant contribution on the performance criteria and deionized water can be effectively used as dielectric medium in EDM. The use of deionized water as dielectric will improve the process and sustainable green machining can be performed. Super ranking method has been implemented to achieve the best combination of control factors and it is obtained that the combination A1B1C3 (i.e. discharge current = 3 A, pulse-on-time = 1 µs and pulse-off-time = 3 µs) is best combination for obtaining the higher MRR and lower TWR and Ra. The contributing factor in the proposed research work is discharge current. Further, ANOVA was implemented to check the adequacy of these result. It was established that discharge current is the most influential factor followed by pulse-on-time and the least contributing factor as pulse-off-time. The findings of this paper may open the guidelines for researcher for performing research in the field of sustainable machining of difficult to cut materials such as Inconel 718 with sustainable dielectrics in engineering applications. Originality/value The paper is original in nature. The findings of this paper may open the guidelines for researcher for performing research in the field of sustainable machining.

2020 ◽  
Vol 62 (5) ◽  
pp. 481-491
Author(s):  
Engin Nas

Abstract This study investigated the electrical discharge machining (EDM) performance of Ramor 500 Armor steel, a material used in the defense industry for armor production. In addition, the surface quality and amount of material wear of the treated surfaces were determined using different electrical discharge processing parameters for a copper electrode including pulse on-time (99, 150, 225, 300, 351 μs), pulse off-time (10, 15, 23, 30, 35 μs), and discharge current (3, 4, 6, 8, 9 A), at a constant pressure of 1 mm depth of cut. As a result of the experiments, the values related to the material removal rate (MRR) and the surface roughness (Ra) were obtained and the findings analyzed via response surface methodology (RSM). The increase in amperage and pulse on time resulted in an increase in Ra and MRR values. The minimum and maximum Ra and MRR values emerged at currents of 3 and 9 A, respectively. In the experiments performed applying currents of between 3 and 9 A, the white layer widths were measured as 0.0474 mm and 0.0915 mm, respectively. The statistical test results showed that the most effective processing parameters for the MRR were the discharge current amperage (49.01 %) and the pulse off-time (16.51 %), whereas the most effective parameter for the Ra value was the discharge current amperage (79.07 %).


Author(s):  
Katerina Mouralova ◽  
Ales Polzer ◽  
Libor Benes ◽  
Josef Bednar ◽  
Radim Zahradnicek ◽  
...  

The unconventional technology of wire electrical discharge machining is a key engineering technology, designed primarily for machining of conventionally difficult machine materials. One of them is nickel alloys, which are majorly used in the aerospace and energy industries. The subject of research in this study was specifically the B1914 nickel-based superalloy, which was subjected to many analyses leading to an overall optimization of its machining using wire electrical discharge machining. In order to determine the effect of machine parameters setup (pulse off time, gap voltage, discharge current, pulse on time and wire feed) on cutting speed, topography, morphology, surface and subsurface layer quality, an extensive Box–Behnken design experiment consisting of 46 rounds was carried out. The analyses of the condition of the surface and subsurface layers were performed, including their chemical composition and changes caused by wire electrical discharge machining. It was found out that the factors like pulse off time, discharge current and pulse on time have the greatest effect on the cutting speed, although from the point of view of surface topography the parameter pulse off time is not significant. The remaining two parameters cause the cutting speed to act against the surface topography i.e. with the increasing cutting speed, the surface topography gets worse and vice versa.


Author(s):  
P Srinivasa Rao and Prof. Eshwara Prasad Koorapati

This work focuses on the use of the Taguchi method in order to find out the optimized parameters of the process like discharge current, pulse on time and pulse off time on the machining features such as material removal rate(MRR), surface roughness(SR) & tool wear rate(TWR) on Stavax Steel by means of Electrical Discharge Machining(EDM). It is also intended to study the individual influence of parameters on the performance characteristics. The dielectric fluid circulating system is modified to conduct the experiments. The analysis of variance (ANOVA) is made to recognise the importance of parameters on the response. By using non-linear regression analysis the empirical models are developed in order to predict these performance characteristics and the confirmation test was conducted at the optimal parameters settings to check the optimum expected values of performance features. Detailed analysis by using ANOVA is done and came out with the findings as a pulse on time is the most significant process parameter, next is the discharge current and the insignificant parameter is the pulse off time. Machining surface morphology was studied and observed that crater size is large and deeper due to a large amount of metal is melted and vaporized at the optimum condition of MRR.


Author(s):  
G. Ramanan ◽  
R. Elangovan

In aerospace and automobile industries manufacturing complex structures using un-conventional machining is increased due to their precision and accuracy. This research investigates the influence of input parameters such as discharge current, pulse on time, pulse off time and servo speed rate of wire cut electrical discharge machining (WEDM) on material removal rate and surface roughness using Box Behnken design supported with response surface methodology. Aluminium alloy 7075 reinforced with 9 % wt. of activated carbon composite is used to carry out the machining process. Most influencing parameters are subjected as the conductive and non-conductive parameters in WEDM process. To find out the significant influence of each factor, analysis of variance was performed. The mathematical model is established using desirability technique and then the optimal machining parameters are determined. The best achieved WEDM performances - material removal rate and surface roughness are 10.46 mm3/min and 3.32μm respectively, by using optimum machining conditions - discharge current 2000mA, pulse on time 8.9µs, pulse off time 25µs and servo speed rate 150rpm at 0.8597 desirability value.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


Author(s):  
Debal Pramanik ◽  
Dipankar Bose

An important electro-thermal process known as wire electrical discharge machining (WEDM) is applied for machining of conductive materials to generate most precisely. All cutting inaccuracies of WEDM arise out of the major cause of wire bending. At the time of cutting a sharp corner or cut profile, bending of the wire leads to a geometrical error on the workpiece. Though this type of error may be of a few hundred microns, it is not suitable for micro applications. In this research study, an experimental investigation based on response surface methodology (RSM) has been done on wire EDM of Aluminium 6061 t6 alloy. This chapter studies the outcome of input process variables (i.e., wire feed rate, pulse on time, pulse off time, and gap voltage) on machining output responses (i.e., corner inaccuracy) extensively. Experimental validation of the proposed model shows that corner inaccuracy value may be reduced by modification of input parameters.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


2018 ◽  
Vol 14 (4) ◽  
pp. 115-124 ◽  
Author(s):  
Shukry H. Aghdeab ◽  
Nareen Hafidh Obaeed ◽  
Marwa Qasim Ibraheem

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


Sign in / Sign up

Export Citation Format

Share Document