A gray wolf optimized FPD plus (1+PI) multistage controller for AGC of multisource non-linear power system

2019 ◽  
Vol 16 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Prakash Chandra Sahu ◽  
Ramesh Chandra Prusty ◽  
Sidhartha Panda

Purpose The paper has proposed to implement gray wolf optimization (GWO)-based filter-type proportional derivative with (FPD) plus (1+ proportional integral) multistage controller in a three-area integrated source-type interlinked power network for achieving automatic generation control. Design/methodology/approach For analysis, a three area interconnected power system of which each area comprises three different generating units where thermal and hydro system as common. Micro sources like wind generator, diesel generator and gas unit are integrated with area1, area2 and area3 respectively. For realization of system nonlinearity some physical constraints like generation rate constraint, governor dead band and boiler dynamics are effected in the system. Findings The supremacy of multistage controller structure over simple proportional integral (PI), proportional integral, derivative (PID) and GWO technique over genetic algorithm, differential evolution techniques has been demonstrated. A comparison is made on performances of different controllers and sensitivity analysis on settling times, overshoots and undershoots of different dynamic responses of system as well as integral based error criteria subsequent a step load perturbation (SLP). Finally, sensitive analysis has been analyzed by varying size of SLP and network parameters in range ±50 per cent from its nominal value. Originality/value Design and implementation of a robust FPD plus (1 + PI) controller for AGC of nonlinear power system. The gains of the proposed controller are optimized by the application of GWO algorithm. An investigation has been done on the dynamic performances of the suggested system by conducting a comparative analysis with conventional PID controller tuned by various optimization techniques to verify its supremacy. Establishment of the robustness and sensitiveness of the controller by varying the size and position of the SLP, varying the loading of the system randomly and varying the time constants of the system.

Author(s):  
U. Prasad ◽  
P.K. Mohanty ◽  
P.K. Chattopadhyaya ◽  
C.K. Panigrahi

This work addresses the special requirements of Automatic Generation Control in Modern interconnected Power system. In order to track the system frequency and handling the power system stability issues many control strategies has been suggested by the researchers .A new Hybrid fuzzy approach is introduced here .Fuzzy Logic controller with Mamdani interface having five member ship functions is tested with the Thermal Thermal and hydro thermal system Further hybrid Fuzzy controller is also tested with the same system and results are compared for the both The system Which is having Hybrid Fuzzy concept and thereby the response of frequency and tie line power can be improved substantially following a load change in any area. Further dynamic responses for small perturbation have been observed, considering HFLC and integral controller and the results of both have been compared.


Now a days AGC has a great roll in controlling the mismatch between generation and load in interconnected power system, to attain AGC more optimal, tuning the controller using optimization techniques is needed. In this paper PSO and DE optimization techniques are employed for dynamic frequency control analysis. For dynamic analysis, the PID gain parameters obtained through single objective optimization using PSO and DE techniques, the controls are implemented by considering 1% of change in load disturbance in area 1 only and computed with sum of absolute value of ith area control error at time t as objective function and simulation result is obtained by interfacing Matlab (.m file) with Simulink block model under study . Comparison analysis is performed between PSO-PID, without controller and DE-PID. According to the investigations, better dynamic response performance is achieved through DE-PID method than the PSO-PID technique for the measured parameters of time response transient analysis such as maximum overshoot, rise time, maximum undershoot and settling time in AGC of two area system.


2019 ◽  
Vol 8 (4) ◽  
pp. 4241-4248

This paper proposes a novel Moth Flame Optimization (MFO) based filter type Proportional Integral and Derivative (PID) controller in multi-area interconnected power system for achieving simultaneously Automatic Generation Control (AGC) and Economic Load Dispatch (ELD). Conventional AGC is economically inefficient in regards to each area has to fulfill its own load variation in responses to keep tie-line power (∆Ptie) its scheduled value. To achieve this ACE based AGC is modified by integrating with ELD and combined known as Economic AGC or Eco-AGC. In Eco-AGC concern though change in area frequency(∆f) is brought to zero but tie-line power deviation (∆Ptie) never comes to zero as power always transmitted from generating station having lower incremental fuel cost to generating station having higher incremental fuel cost. In this regard an optimized filter based PID controller is used for stabilizing different dynamic responses of the Eco-AGC system. The proposed controller gains are tuned by using Moth Flame Optimization (MFO) techniques and for supremacy it is compared with standard PSO and Differential Evolution (DE) algorithm. The supremacy of MFO based PID structure over PSO and DE based PID and without ED controller has been demonstrated through dynamic responses. Finally it is revealed in Eco-AGC concern, the committed units are economically scheduled and there is a significant improvement in all dynamic responses of the system.


2011 ◽  
Vol 354-355 ◽  
pp. 964-967
Author(s):  
Guo Wei Dong ◽  
Ping Yang

This paper presents automatic generation control (AGC) of interconnected two equal area power system provided with single reheat turbine and generation rate constraints of 3% per minute. This paper also contrasts to control performance of several types of classical controller, include of Integral (I), Proportional – Integral (PI), Integral – Derivative (ID), Proportional – Integral – Derivative (PID), or Integral – Double Derivative (IDD). With 1% step load perturbation in area1, controllers’ performance analysis can be taken by frequency deviation, tie-line power deviation, and input signal of governor.


2018 ◽  
Vol 8 (10) ◽  
pp. 1848 ◽  
Author(s):  
Arman Oshnoei ◽  
Rahmat Khezri ◽  
SM Muyeen ◽  
Frede Blaabjerg

Wind farms can contribute to ancillary services to the power system, by advancing and adopting new control techniques in existing, and also in new, wind turbine generator systems. One of the most important aspects of ancillary service related to wind farms is frequency regulation, which is partitioned into inertial response, primary control, and supplementary control or automatic generation control (AGC). The contribution of wind farms for the first two is well addressed in literature; however, the AGC and its associated controls require more attention. In this paper, in the first step, the contribution of wind farms in supplementary/load frequency control of AGC is overviewed. As second step, a fractional order proportional-integral-differential (FOPID) controller is proposed to control the governor speed of wind turbine to contribute to the AGC. The performance of FOPID controller is compared with classic proportional-integral-differential (PID) controller, to demonstrate the efficacy of the proposed control method in the frequency regulation of a two-area power system. Furthermore, the effect of penetration level of wind farms on the load frequency control is analyzed.


Sign in / Sign up

Export Citation Format

Share Document