Inhomogeneity of action potential waveshape assists frequency entrainment of cardiac pacemaker cells

2001 ◽  
Vol 48 (10) ◽  
pp. 1108-1115 ◽  
Author(s):  
S.L. Cloherty ◽  
N.H. Lovell ◽  
B.G. Celler ◽  
S. Dokos
Author(s):  
Dongmei Yang ◽  
Alexey E. Lyashkov ◽  
Christopher H. Morrell ◽  
Ihor Zahanich ◽  
Yael Yaniv ◽  
...  

AbstractVariability of heart pacemaker cell action potential (AP) firing intervals (APFI) means that pacemaker mechanisms do not achieve equilibrium during AP firing. We tested whether mechanisms that underlie APFI, in rabbit sinoatrial cells are self-similar within and across the physiologic range of APFIs effected by autonomic receptor stimulation. Principal Component Analyses demonstrated that means and variabilities of APFIs and local Ca2+ releases kinetics, of AP induced Ca2+-transient decay times, of diastolic membrane depolarization rates, of AP repolarization times, of simulated ion current amplitudes, are self-similar across the broad range of APFIs (264 to 786 ms). Further, distributions of both mean APFIs and mean Ca2+ and membrane potential dependent coupled-clock function kinetics manifested similar power law behaviors across the physiologic range of mean APFIs. Thus, self-similar variability of clock functions intrinsic to heart pacemaker cells determines both the mean APFI and its interval variability, and vice versa.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Vinogradova ◽  
K Tarasov ◽  
D Riordon ◽  
Y Tarasova ◽  
E Lakatta

Abstract   The spontaneous beating rate of rabbit sinoatrial node cells (SANC) is regulated by local subsarcolemmal calcium releases (LCRs) from sarcoplasmic reticulum (SR). LCRs appear during diastolic depolarization (DD) and activate an inward sodium/calcium exchange current which increases DD rate and thus accelerates spontaneous SANC firing. High basal level of protein kinase A and calcium/calmodulin-dependent protein kinase II phosphorylation are required to sustain basal LCRs and normal spontaneous SANC firing. Recently we discovered that basal PKC activation is also obligatory for cardiac pacemaker function: inhibition of PKC activity by broad spectrum PKC inhibitors Bis I or calphostin C markedly suppressed SR calcium cycling and decreased or abolished spontaneous beating of freshly isolated rabbit SANC. Here we studied which PKC isoforms mediate PKC-dependent effects on cardiac pacemaker cell automaticity. The PKC superfamily consists of 3 major subgroups: conventional, novel and atypical. All PKC isoforms were detected at the RNA level (RT-qPCR) in the rabbit SA node and ventricle, and expression levels were comparable in both tissues. Expression of PKCβ, however, was markedly higher in the rabbit SA node, compared to other PKC isoenzymes in either tissue. We verified expression of conventional PKC (α, β) and novel PKC-delta at the protein level in SANC and ventricular myocytes (VM). Western blot confirmed RNA results, showing a 6-fold higher PKCβ protein abundance in SANC compared to VM. Expression of PKCα protein was similar in both cell types, while PKC-delta protein was more abundant in VM. To study whether PKCβ regulates spontaneous beating of SANC we employed selective inhibitor of conventional (α, β, gamma) PKC isoforms Go6976 (10 μmol/L), which had no effects on either LCR characteristics (confocal microscopy, calcium indicator Fluo-3AM) or spontaneous beating of freshly isolated rabbit SANC (perforated patch-clamp technique). Because selective PKC-delta inhibitors are not available, we explored effects of PKC-delta inhibition comparing effects of Go6976 (the inhibitor of conventional PKCs) and Go6983, which inhibits conventional PKCs and PKC-delta. In contrast to Go6976, Go6983 (5 μmol/L) markedly decreased the LCR size (from 7.1±0.4 to 4.5±0.3 μm) and number per each spontaneous cycle (from 1.3±0.1 to 0.8±0.1). It also markedly increased the LCR period (time from the prior AP-induced calcium transient to the subsequent LCR) which was paralleled by an increase in the spontaneous SANC cycle length. Rottlerin, another PKC-delta inhibitor, produced similar effects on LCR characteristics, and markedly and time-dependently decreased DD rate, leading to an increase in the spontaneous cycle length, and finally abrogated the spontaneous SANC firing. Thus, our data indicate that basal activity of PKC-delta, but not that of PKCβ, is essential for generation of LCRs and normal spontaneous firing of cardiac pacemaker cells. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Intramural Research Program, National Institute on Aging, National Institute of Health, USA


1996 ◽  
Vol 270 (6) ◽  
pp. H2108-H2119 ◽  
Author(s):  
H. Muramatsu ◽  
A. R. Zou ◽  
G. A. Berkowitz ◽  
R. D. Nathan

A tetrodotoxin (TTX)-sensitive Na+ current (iNa) was investigated in single pacemaker cells after 1-4 days in culture. Ruptured-patch and perforated-patch whole cell recording techniques were used to record iNa and spontaneous electrical activity, respectively. For seven cells exposed to 20 mM Na+ (22-24 degrees C) and held at -98 mV (25% of the channels inactivated), the uncorrected maximum iNa was -39 +/- 10 pA/pF at -29.1 +/- 2.4 (SE) mV, maximum conductance was 0.9 +/- 0.2 nS/pF (1.6 +/- 0.2 mS/cm2). Half-activation and inactivation potentials were -41.4 +/- 2.0 and -90.6 +/- 2.5 mV, and the corresponding slope factors were 6.0 +/- 0.4 and 6.4 +/- 0.6 mV. Inactivation and recovery from inactivation were best fit by sums of two exponentials. During action potential clamp, a TTX-sensitive compensation current accounted for 55% of the upstroke velocity. The results suggest that iNa contributes significantly to the action potential in some nodal pacemaker cells, and the characteristics of iNa are similar to those of atrial and ventricular myocytes.


1995 ◽  
Vol 198 (1) ◽  
pp. 137-140 ◽  
Author(s):  
A A Harper ◽  
I P Newton ◽  
P W Watt

The spontaneous cardiac pacemaker activity and conformation were recorded in vitro, using intracellular recording methods, from heart tissue of summer- and winter-caught plaice. The effects of changing temperature on the pacemaker rate, duration of action potential and diastolic depolarization were investigated by altering the temperature of the superfusing medium. The resting intrinsic rate of discharge was significantly greater in pacemaker cells from winter plaice (P=0.05), but there was no significant difference between winter and summer fish in the apparent Arrhenius activation energies for this process. However, there was a significant difference in the estimated intercept, indicating a thermal shift in the processes underlying the spontaneous pacemaker rhythm. There was no significant difference in the diastolic depolarization duration recorded from winter and summer fish over the temperature range 4­22 °C. The major effect of previous environmental temperature was on the duration of the action potential (P<0.02), indicating that the observed changes in pacemaker discharge rate were not influenced by the processes that determine the duration of the pacemaker diastolic depolarisation but were modulated by the channel events that give rise to the action potential.


Sign in / Sign up

Export Citation Format

Share Document