Normal spontaneous firing of cardiac pacemaker cells is regulated by basal pkc delta activation

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
T Vinogradova ◽  
K Tarasov ◽  
D Riordon ◽  
Y Tarasova ◽  
E Lakatta

Abstract   The spontaneous beating rate of rabbit sinoatrial node cells (SANC) is regulated by local subsarcolemmal calcium releases (LCRs) from sarcoplasmic reticulum (SR). LCRs appear during diastolic depolarization (DD) and activate an inward sodium/calcium exchange current which increases DD rate and thus accelerates spontaneous SANC firing. High basal level of protein kinase A and calcium/calmodulin-dependent protein kinase II phosphorylation are required to sustain basal LCRs and normal spontaneous SANC firing. Recently we discovered that basal PKC activation is also obligatory for cardiac pacemaker function: inhibition of PKC activity by broad spectrum PKC inhibitors Bis I or calphostin C markedly suppressed SR calcium cycling and decreased or abolished spontaneous beating of freshly isolated rabbit SANC. Here we studied which PKC isoforms mediate PKC-dependent effects on cardiac pacemaker cell automaticity. The PKC superfamily consists of 3 major subgroups: conventional, novel and atypical. All PKC isoforms were detected at the RNA level (RT-qPCR) in the rabbit SA node and ventricle, and expression levels were comparable in both tissues. Expression of PKCβ, however, was markedly higher in the rabbit SA node, compared to other PKC isoenzymes in either tissue. We verified expression of conventional PKC (α, β) and novel PKC-delta at the protein level in SANC and ventricular myocytes (VM). Western blot confirmed RNA results, showing a 6-fold higher PKCβ protein abundance in SANC compared to VM. Expression of PKCα protein was similar in both cell types, while PKC-delta protein was more abundant in VM. To study whether PKCβ regulates spontaneous beating of SANC we employed selective inhibitor of conventional (α, β, gamma) PKC isoforms Go6976 (10 μmol/L), which had no effects on either LCR characteristics (confocal microscopy, calcium indicator Fluo-3AM) or spontaneous beating of freshly isolated rabbit SANC (perforated patch-clamp technique). Because selective PKC-delta inhibitors are not available, we explored effects of PKC-delta inhibition comparing effects of Go6976 (the inhibitor of conventional PKCs) and Go6983, which inhibits conventional PKCs and PKC-delta. In contrast to Go6976, Go6983 (5 μmol/L) markedly decreased the LCR size (from 7.1±0.4 to 4.5±0.3 μm) and number per each spontaneous cycle (from 1.3±0.1 to 0.8±0.1). It also markedly increased the LCR period (time from the prior AP-induced calcium transient to the subsequent LCR) which was paralleled by an increase in the spontaneous SANC cycle length. Rottlerin, another PKC-delta inhibitor, produced similar effects on LCR characteristics, and markedly and time-dependently decreased DD rate, leading to an increase in the spontaneous cycle length, and finally abrogated the spontaneous SANC firing. Thus, our data indicate that basal activity of PKC-delta, but not that of PKCβ, is essential for generation of LCRs and normal spontaneous firing of cardiac pacemaker cells. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Intramural Research Program, National Institute on Aging, National Institute of Health, USA

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Vinogradova ◽  
K Tarasov ◽  
Y Tarasova ◽  
E Lakatta

Abstract Spontaneous firing of sinoatrial node cells (SANC) is regulated by sarcoplasmic reticulum (SR) generated local subsarcolemmal calcium releases (LCRs). LCRs appear during diastolic depolarization (DD) and activate an inward sodium-calcium exchange current to accelerate the DD rate and thus spontaneous SANC firing. Vascular endothelial growth factor (VEGF) receptors VEGFR1 and VEGFR2 activate PLC, and suppression of VEGFR-PLC signaling decreases calcium transients and contractility in ventricular myocytes. We tested the idea that VEGFR-PLC signaling may contribute to normal spontaneous beating of SANC. We observed that expression of VEGFR1 (assessed by RT-qPCR) in rabbit sinoatrial node was comparable to that of β1-adrenergic receptors, but less than that in ventricle. The pan VEGFR1/2/3 inhibitor PTK787/ZK222584 (10 μmol/L) in a time-dependent manner: (1) suppressed spontaneous SANC beating rate by ∼50% (perforated patch-clamp technique); (2) markedly decreased the LCR size and number per each spontaneous cycle (confocal microscopy, calcium indicator Fluo-3) and prolonged the LCR period (the interval between action potential-induced calcium transient and occurrence of subsequent LCR). The PTK787/ZK222584-induced increase in the LCR period (from 348.2±30.3 to 619.9±103.4 msec; P<0.05) predicted the concomitant increase in the spontaneous cycle length (from 405.6±31.1 to 702.1±105.1 msec; P<0.05), suggesting that calcium cycling could be a major target of VEGFR-dependent regulation of SANC firing. All effects of PTK787/ZK222584 were reversible upon washout. To elucidate whether signaling of VEGFR1 or VEGFR2 regulated spontaneous SANC firing, we employed a selective VEGFR2 inhibitor ZM-323881 (5 μmol/L), which suppressed spontaneous beating rate in only 2 of 10 SANC. These results indicate that VEGFR1, but not VEGFR2, is likely a key receptor that modulates automaticity in majority of SANC. To clarify downstream targets from VEGFR1 we employed PLC inhibitor U-73122, which decreased the LCR size, number and prolonged the LCR period. The inactive analog U-73343 was without effect. Because LCRs are critically dependent upon the SR calcium load, supplied by L-type calcium current (ICa,L), we examined effects of U-73122 on ICa,L. U-73122, but not U-73343, markedly suppressed ICa,L amplitude by ∼50%, leading to a decrease in the calcium influx and, as a result, to decrease in the LCR parameters, prolongation of the LCR period and spontaneous SANC cycle length. Thus, basal VEGFR1 signaling activates PLC, which modulates intracellular SR calcium cycling and LCR characteristics in SANC. We conclude that VEGFR1-PLC is a novel mechanism involved in the regulation of normal automaticity of cardiac pacemaker cells. Acknowledgement/Funding Intramural Research Program, National Institute on Aging, NIH


2016 ◽  
Vol 310 (9) ◽  
pp. H1259-H1266 ◽  
Author(s):  
Joachim Behar ◽  
Yael Yaniv

Cardiac pacemaker cell function is regulated by a coupled-clock system that integrates molecular cues on the cell-membrane surface (i.e., membrane clock) and on the sarcoplasmic reticulum (SR) (i.e., Ca2+ clock). A recent study has shown that cotransfection of spontaneous beating cells (HEK293 cells and neonatal rat myocytes) with R524Q-mutant human hyperpolarization-activated cyclic nucleotide-gated molecules (the dominant component of funny channels) increases the funny channel's sensitivity to cAMP and leads to a decrease in spontaneous action potential (AP) cycle length (i.e., tachycardia). We hypothesize that in rabbit pacemaker cells, the same behavior is expected, and because of the coupled-clock system, the resultant steady-state decrease in AP cycle length will embody contributions from both clocks: the initial decrease in the spontaneous AP beating interval, arising from increased sensitivity of the f-channel to cAMP, will be accompanied by an increase in the adenylyl cyclase (AC)-cAMP-PKA-dependent phosphorylation activity, which will further decrease this interval. To test our hypothesis, we used the recently developed Yaniv-Lakatta pacemaker cell numerical model. This model predicts the cAMP signaling dynamics, as well as the kinetics and magnitude of protein phosphorylation in both normal and mutant pacemaker cells. We found that R524Q-mutant pacemaker cells have a shorter AP firing rate than that of wild-type cells and that gain in pacemaker function is the net effect of the R514Q mutation on the functioning of the coupled-clock system. Specifically, our results directly support the hypothesis that changes in Ca2+-activated AC-cAMP-PKA signaling are involved in the development of tachycardia in R524Q-mutant pacemaker cells.


1997 ◽  
Vol 272 (1) ◽  
pp. C263-C269 ◽  
Author(s):  
D. Zoukhri ◽  
R. R. Hodges ◽  
C. Sergheraert ◽  
A. Toker ◽  
D. A. Dartt

In the present study, we have synthesized and N-myristoylated peptides derived from the pseudosubstrate sequences of protein kinase C (PKC)-alpha, -delta, and -epsilon [Myr-PKC-alpha-(15-28), Myr-PKC-delta-(142-153), and Myr-PKC-epsilon-(149-164)], three isoforms present in rat lacrimal gland, and a peptide derived from the sequence of the endogenous inhibitor of protein kinase A [Myr-PKI-(17-25)]. Lacrimal gland acini were preincubated for 60 min with the myristoylated peptides (10(-10) to 3 x 10(-7) M), then protein secretion was stimulated with a phorbol ester, phorbol 12,13-dibutyrate (10(-6) M); vasoactive intestinal peptide (10(-8) M); a cholinergic agonist, carbachol (10(-5) M); or an alpha 1-adrenergic agonist, phenylephrine (10(-4) M), for 20 min. In intact lacrimal gland acini, Myr-PKC-alpha-(15-28) inhibited phorbol 12,13-dibutyrate-induced protein secretion. This effect was not reproduced by the acetylated peptide or by the myristoylated PKI, which inhibited vasoactive intestinal peptide-induced protein secretion, a response mediated by protein kinase A. Carbachol-induced protein secretion was inhibited by all three peptides. In contrast, phenylephrine-induced protein secretion was inhibited only by Myr-PKC-epsilon-(149-164), whereas Myr-PKC-alpha-(15-28) and Myr-PKC-delta-(142-153) had a stimulatory effect. None of these myristoylated peptides affected the calcium increase evoked by cholinergic or alpha 1-adrenergic agonists. We concluded that phorbol ester- and receptor-induced protein secretion involve different PKC isoforms in lacrimal gland.


1997 ◽  
Vol 272 (5) ◽  
pp. H2485-H2491 ◽  
Author(s):  
V. Rybin ◽  
S. F. Steinberg

Although calcium-insensitive protein kinase C (PKC) isoforms (PKC-epsilon and PKC-delta) are consistently detected in adult ventricular myocytes, the evidence that adult ventricular myocytes also express calcium-sensitive PKC-alpha is inconsistent. The current study used four different anti-PKC-alpha-antibodies to resolve some of the uncertainties regarding the immunodetection of PKC-alpha in adult ventricular myocytes. Three of the antibodies used in this study barely (GIBCO-BRL) or rather faintly (Transduction Laboratories and Seikagaku America) recognize PKC-alpha in crude preparations from adult ventricular myocytes. Although each of these antibodies recognizes a prominent 80-kDa band, which is similar in size to PKC-alpha, this represents nonspecific immunoreactivity and should not be confused with PKC-alpha. This conclusion is based on peptide-blocking experiments (GIBCO-BRL), the absence of the requisite sensitivity to calcium- and phorbol 12-myristate 13-acetate-induced translocation (Seikagaku America and Transduction Laboratories), and/or the failure to copurify with PKC-alpha on DEAE-Sephacel chromatography. Nevertheless, an antibody from Upstate Biotechnology clearly recognizes PKC-alpha and not other unrelated nonspecific immunoreactive species in crude preparations from adult ventricular myocytes. Each of the antisera used in this study could detect PKC-alpha immunoreactivity following chromatographic purification of the samples to enrich for PKC-alpha and remove nonspecific immunoreactive proteins. These results suggest that PKC-alpha is expressed by adult ventricular myocytes and argue that differences in the sensitivity and/or specificity of available antisera contribute to at least some of the confusion regarding PKC-alpha expression in adult ventricular myocytes.


2003 ◽  
Vol 30 (3) ◽  
pp. 271-286 ◽  
Author(s):  
CE Wrede ◽  
LM Dickson ◽  
MK Lingohr ◽  
I Briaud ◽  
CJ Rhodes

It is possible that activation of protein kinase C (PKC) isoforms by free fatty acids (FFA) plays a role in the failure of pancreatic beta-cell mass expansion to compensate for peripheral insulin resistance in the pathogenesis of type-2 diabetes. The effect of lipid moieties on activation of conventional (PKC-alpha and -beta1), novel (PKC-delta) and atypical (PKC-zeta) PKC isoforms was evaluated in an in vitro assay, using biotinylated neurogranin as a substrate. Oleoyl-Coenzyme A (CoA) and palmitoyl-CoA, but not unesterified FFA, significantly increased the activity of all PKC isoforms (P< or =0.05), particularly that for PKC-delta. It was found that FFA (0.4 mM oleate/complexed to 0.5% bovine serum albumin) inhibited IGF-I-induced activation of protein kinase B (PKB) in the pancreatic beta-cell line (INS-1), but this was alleviated in the presence of the general PKC inhibitor (Go6850; 1 microM). To further investigate whether conventional or novel PKC isoforms adversely affect beta-cell proliferation, the effect of phorbol ester (phorbol 12-myristate 13-acetate; PMA)-mediated activation of these PKC isoforms on glucose/IGF-I-induced INS-1 cell mitogenesis, and insulin receptor substrate (IRS)-mediated signal transduction was investigated. PMA-mediated activation of PKC (100 nM; 4 h) reduced glucose/IGF-I mediated beta-cell mitogenesis (>50%; P< or =0.05), which was reversible by the general PKC inhibitor Go6850 (1 microM), indicating an effect of PKC and not due to a non-specific PMA toxicity. PMA inhibited IGF-I-induced activation of PKB, correlating with inhibition of IGF-I-induced association of IRS-2 with the p85 regulatory subunit of phosphatidylinositol-3 kinase. However, in contrast, PMA activated the mitogen-activated protein kinases, Erk1/2. Titration inhibition analysis using PKC isoform inhibitors indicated that these PMA-induced effects were via novel PKC isoforms. Thus, FFA/PMA-induced activation of novel PKC isoforms can inhibit glucose/IGF-I-mediated beta-cell mitogenesis, in part by decreasing PKB activation, despite an upregulation of Erk1/2. Thus, activation of novel PKC isoforms by long-chain acyl-CoA may well contribute to decreasing beta-cell mass in the pathogenesis of type-2 diabetes, similar to their inhibition of insulin signal transduction which causes insulin resistance.


2006 ◽  
Vol 98 (4) ◽  
pp. 505-514 ◽  
Author(s):  
Tatiana M. Vinogradova ◽  
Alexey E. Lyashkov ◽  
Weizhong Zhu ◽  
Abdul M. Ruknudin ◽  
Syevda Sirenko ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2124
Author(s):  
Mary S. Kim ◽  
Oliver Monfredi ◽  
Larissa A. Maltseva ◽  
Edward G. Lakatta ◽  
Victor A. Maltsev

The heartbeat is initiated by pacemaker cells residing in the sinoatrial node (SAN). SAN cells generate spontaneous action potentials (APs), i.e., normal automaticity. The sympathetic nervous system increases the heart rate commensurate with the cardiac output demand via stimulation of SAN β-adrenergic receptors (βAR). While SAN cells reportedly represent a highly heterogeneous cell population, the current dogma is that, in response to βAR stimulation, all cells increase their spontaneous AP firing rate in a similar fashion. The aim of the present study was to investigate the cell-to-cell variability in the responses of a large population of SAN cells. We measured the βAR responses among 166 single SAN cells isolated from 33 guinea pig hearts. In contrast to the current dogma, the SAN cell responses to βAR stimulation substantially varied. In each cell, changes in the AP cycle length were highly correlated (R2 = 0.97) with the AP cycle length before βAR stimulation. While, as expected, on average, the cells increased their pacemaker rate, greater responses were observed in cells with slower basal rates, and vice versa: cells with higher basal rates showed smaller responses, no responses, or even decreased their rate. Thus, βAR stimulation synchronized the operation of the SAN cell population toward a higher average rate, rather than uniformly shifting the rate in each cell, creating a new paradigm of βAR-driven fight-or-flight responses among individual pacemaker cells.


2012 ◽  
Vol 102 (3) ◽  
pp. 511a
Author(s):  
Tatiana M. Vinogradova ◽  
Edward G. Lakatta

Sign in / Sign up

Export Citation Format

Share Document