Characterization of a TTX-sensitive Na+ current in pacemaker cells isolated from rabbit sinoatrial node

1996 ◽  
Vol 270 (6) ◽  
pp. H2108-H2119 ◽  
Author(s):  
H. Muramatsu ◽  
A. R. Zou ◽  
G. A. Berkowitz ◽  
R. D. Nathan

A tetrodotoxin (TTX)-sensitive Na+ current (iNa) was investigated in single pacemaker cells after 1-4 days in culture. Ruptured-patch and perforated-patch whole cell recording techniques were used to record iNa and spontaneous electrical activity, respectively. For seven cells exposed to 20 mM Na+ (22-24 degrees C) and held at -98 mV (25% of the channels inactivated), the uncorrected maximum iNa was -39 +/- 10 pA/pF at -29.1 +/- 2.4 (SE) mV, maximum conductance was 0.9 +/- 0.2 nS/pF (1.6 +/- 0.2 mS/cm2). Half-activation and inactivation potentials were -41.4 +/- 2.0 and -90.6 +/- 2.5 mV, and the corresponding slope factors were 6.0 +/- 0.4 and 6.4 +/- 0.6 mV. Inactivation and recovery from inactivation were best fit by sums of two exponentials. During action potential clamp, a TTX-sensitive compensation current accounted for 55% of the upstroke velocity. The results suggest that iNa contributes significantly to the action potential in some nodal pacemaker cells, and the characteristics of iNa are similar to those of atrial and ventricular myocytes.

1988 ◽  
Vol 254 (6) ◽  
pp. H1157-H1166 ◽  
Author(s):  
J. A. Wasserstrom ◽  
J. J. Salata

We studied the effects of tetrodotoxin (TTX) and lidocaine on transmembrane action potentials and ionic currents in dog isolated ventricular myocytes. TTX (0.1-1 x 10(-5) M) and lidocaine (0.5-2 x 10(-5) M) decreased action potential duration, but only TTX decreased the maximum rate of depolarization (Vmax). Both TTX (1-2 x 10(-5) M) and lidocaine (2-5 x 10(-5) M) blocked a slowly inactivating toward current in the plateau voltage range. The voltage- and time-dependent characteristics of this current are virtually identical to those described in Purkinje fibers for the slowly inactivating inward Na+ current. In addition, TTX abolished the outward shift in net current at plateau potentials caused by lidocaine alone. Lidocaine had no detectable effect on the slow inward Ca2+ current and the inward K+ current rectifier, Ia. Our results indicate that 1) there is a slowly inactivating inward Na+ current in ventricular cells similar in time, voltage, and TTX sensitivity to that described in Purkinje fibers; 2) both TTX and lidocaine shorten ventricular action potentials by reducing this slowly inactivating Na+ current; 3) lidocaine has no additional actions on other ionic currents that contribute to its ability to abbreviate ventricular action potentials; and 4) although both agents shorten the action potential by the same mechanism, only TTX reduces Vmax. This last point suggests that TTX produces tonic block of Na+ current, whereas lidocaine may produce state-dependent Na+ channel block, namely, blockade of Na+ current only after Na+ channels have already been opened (inactivated-state block).


2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.


1991 ◽  
Vol 261 (2) ◽  
pp. C393-C397 ◽  
Author(s):  
J. Arreola ◽  
R. T. Dirksen ◽  
R. C. Shieh ◽  
D. J. Williford ◽  
S. S. Sheu

Precise characterization of the magnitude and kinetics of transsarcolemmal Ca2+ influx during an action potential (AP) is essential for a complete understanding of excitation-contraction coupling in heart. Using a voltage-clamp protocol that simulated a physiological AP (AP clamp), we characterized the properties of the Ca2+ current (ICa) in guinea pig ventricular myocytes. The AP-generated ICa showed a complex time course that was different from ICa generated by a square pulse. ICa activated rapidly during the upstroke of the AP and then partially inactivated during the plateau. The fast component of ICa reached a peak value of -7.6 +/- 1.0 pA/pF at 2.40 +/- 0.30 ms after depolarization, followed by a slow component with a peak value of -2.9 +/- 0.4 pA/pF during the plateau. ICa generated by an AP was composed of both L- and T-type Ca2+ channels. T-type Ca2+ current contributed to the fast component of ICa and L-type Ca2+ current contributed to both fast and slow components of ICa. Activation of beta-adrenoceptors enhanced ICa with a maximal effect lasting throughout the entire plateau of the AP. Measurements of cytosolic Ca2+ transients using fura-2 indicated that the ICa was responsible for triggering Ca2+ release from the sarcoplasmic reticulum. The AP clamp provides a new approach for investigation of the relationship between ICa and Ca2+ transients under more physiological conditions.


1995 ◽  
Vol 269 (5) ◽  
pp. H1695-H1703 ◽  
Author(s):  
J. Maylie ◽  
M. Morad

Two types of Ca2+ currents with characteristics of T- and L-type Ca2+ currents were recorded in ventricular myocytes of dogfish (Squalus acanthias). The T-type Ca2+ current activated near -70 mV and had a peak current density of 9.8 pA/pF at -34 mV. The L-type Ca2+ current activated near -50 mV and had a peak current density of 10.6 pA/pF near 0 mV. The threshold for activation of the T-type Ca2+ current was 20 mV negative to that of the tetrodotoxin-sensitive Na+ current. Inactivation of the T-type Ca2+ current was rapid with a limiting time constant of 5 ms at positive potentials. The T-type Ca2+ current was not modulated by isoproterenol or acetylcholine. In dogfish the T-type Ca2+ channel has current densities equivalent to the L-type channel and is likely to activate before the Na+ channel, contributing significantly to generation of the foot of the action potential.


1997 ◽  
Vol 273 (2) ◽  
pp. C541-C547 ◽  
Author(s):  
J. I. Vandenberg ◽  
G. C. Bett ◽  
T. Powell

The purpose of this investigation was to determine to what extent the swelling-activated Cl- current (ICl,swell) contributes to swelling-induced changes in the resting membrane potential and action potential duration (APD) in ventricular myocytes. Action potentials were recorded from guinea pig ventricular myocytes using conventional whole cell recording techniques. Cell swelling caused initial lengthening followed by a variable shortening of APD. In 59% of cells this secondary APD shortening had a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive component, consistent with a contribution from ICl,swell. Furthermore, DIDS partially antagonized the depolarization of the resting membrane potential that occurred during cell swelling. We have modeled the ICl,swell using the Oxsoft Heart computer program. Action potential changes predicted by the model agree well with the observed DIDS-sensitive component of the change in the action potential during cell swelling. We conclude that activation of ICl,swell contributes to shortening of APD and depolarization of the resting membrane potential during cell swelling in cardiac myocytes.


2007 ◽  
Vol 293 (5) ◽  
pp. H2986-H2994 ◽  
Author(s):  
Yi-Mei Du ◽  
Richard D. Nathan

Ischemic-like conditions (a glucose-free, pH 6.6 Tyrode solution bubbled with 100% N2) enhance L-type Ca current ( ICa,L) in single pacemaker cells (PCs) isolated from the rabbit sinoatrial node (SAN). In contrast, studies of ventricular myocytes have shown that acidic extracellular pH, as employed in our “ischemic” Tyrode, reduces ICa,L. Therefore, our goal was to explain why ICa,L is increased by “ischemia” in SAN PCs. The major findings were the following: 1) blockade of Ca-induced Ca release with ryanodine, exposure of PCs to BAPTA-AM, or replacement of extracellular Ca2+ with Ba2+ failed to prevent the ischemia-induced enhancement of ICa,L; 2) inhibition of protein kinase A with H-89, or calcium/calmodulin-dependent protein kinase II with KN-93, reduced ICa,L but did not prevent its augmentation by ischemia; 3) ischemic Tyrode or pH 6.6 Tyrode shifted the steady-state inactivation curve in the positive direction, thereby reducing inactivation; 4) ischemic Tyrode increased the maximum conductance but did not affect the activation curve; 5) in rabbit atrial myocytes isolated and studied with exactly the same techniques used for SAN PCs, ischemic Tyrode reduced the maximum conductance and shifted the activation curve in the positive direction; pH 6.6 Tyrode also shifted the steady-state inactivation curve in the positive direction. We conclude that the acidic pH of ischemic Tyrode enhances ICa,L in SAN PCs, because it increases the maximum conductance and reduces inactivation. Furthermore, the opposite results obtained with rabbit atrial myocytes cannot be explained by differences in cell isolation or patch-clamp techniques.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
B Horvath ◽  
MN Khan ◽  
T Hezso ◽  
C Dienes ◽  
Z Kovacs ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): National Research, Development and Innovation Office New National Excellence Programme Enhancement of the late Na+ current (INa,late) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS-458967 (GS) is an agent considered to be a selective blocker of INa,late. In the present study, effects of GS967 on INa,late, on L-type calcium current (ICaL), and on action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. These effects of GS were compared to tetrodotoxin (TTX) and to the class I/B antiarrhythmic compound mexiletine. GS (1 μM), mexiletine (40 μM) and TTX (10 μM) dissected largely similarly shaped inward currents under action potential voltage clamp conditions. In case of GS and mexiletine, the amplitude and integral of this inward current was significantly smaller when measured in the presence of 1 μM nisoldipine, while no difference was observed in case of TTX. Under conventional voltage clamp conditions, INa,late was significantly reduced by 1 μM GS and 40 μM mexiletine (about 79% and 63% reduction of current integrals, respectively). The integral of ICa,L was moderately but significantly decreased by both drugs (reduction of 9% and 14%, respectively). These changes were associated with a faster inactivation of ICa,L. Drug effects on early Na+ current (INa,early) were assessed by analyzing the maximal rate of depolarization (V + max) in multicellular preparations. Both GS and mexiletine showed fast onset and offset kinetics: 110 ms and 289 ms offset time constants, respectively, as determined from V + max measurements in right ventricular papillary muscles, while the onset kinetics was characterized by 5.3 AP and 2.6 AP lengths, respectively, at 2.5 Hz. Effects on beat-to-beat variability of AP duration (APD) was studied in isolated myocytes. Short-term variability was significantly decreased by both GS and mexiletine (average reduction of 42% and 24%, respectively) while they caused similar shortening of the APD. The electrophysiological effects of GS are similar to those of mexiletine, but with a somewhat faster offset kinetics of V + max block. However, since GS reduced V+ max and INa,late in the same concentration, the currently accepted view that GS that selectively blocks INa,late has to be questioned and it is suggested that GS should be classified as a class I/B (or I/B + IV) antiarrhythmic agent.


1991 ◽  
Vol 260 (6) ◽  
pp. H1810-H1818
Author(s):  
M. R. Gold ◽  
G. R. Strichartz

Acute effects of repetitive depolarization on the inward Na+ current (INa) of cultured embryonic chick atrial cells were studied using the whole cell patch-clamp technique. Stimulation rates of 1 Hz or greater produced a progressive decrement of peak INa. With depolarizations to 0 mV of 150-ms duration, applied at 2 Hz from a holding potential of -100 mV, the steady-state decrement was approximately 20%. The magnitude of this effect increased with stimulation frequency and with test potential depolarization and decreased with membrane hyperpolarization. Analysis of INa kinetics revealed that reactivation was sufficiently slow to preclude complete recovery from inactivation with interpulse intervals less than 1,000 ms. Moreover, reactivation accelerated markedly with membrane hyperpolarization, in parallel with the response to repetitive stimulation. The multiexponential time course of recovery of peak INa from repetitive depolarization was similar to that observed after single stimuli; however, there was a shift toward a greater proportion of current recovering with the slower of two time constants. It is concluded that incomplete recovery from inactivation is responsible for the decrement in INa observed with short interpulse intervals.


Sign in / Sign up

Export Citation Format

Share Document