Harmonic power flow analysis for the measurement of the electric power quality

1995 ◽  
Vol 44 (3) ◽  
pp. 683-685 ◽  
Author(s):  
L. Cristaldi ◽  
A. Ferrero
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3305 ◽  
Author(s):  
Wei-Neng Chang ◽  
Chia-Min Chang ◽  
Shao-Kang Yen

Improper connections of unbalanced distributed generators (DGs) and loads in a three-phase microgrid cause unbalanced and bidirectional power flow problems. The unbalanced DGs and loads may also aggravate the electric power quality (EPQ), such as voltage regulation, power factor, and unbalanced current and voltage. This increases the difficulty of operation in a microgrid. In this study, a three-phase, delta-connected, shunt-type universal compensator was employed for achieving the bidirectional power-flow balancing and improving the EPQ of a three-phase, distribution-level microgrid with unbalanced DGs and loads. A feedforward compensation scheme was derived for the compensator by using the symmetrical components method. In practical applications, the universal compensator can be implemented as static var compensators (SVCs), static synchronous compensators (STATCOMs), or an additional function of active filters. With the on-line compensation of the proposed compensator, the bidirectional power-flow balancing and EPQ improvement in the microgrid were achieved. A demonstration system was proposed to present the effectiveness of the compensator.


Author(s):  
I. A Ethmane ◽  
A.K. Mahmoud ◽  
M. Maaroufi ◽  
A. Yahfdhou

T<span>o solve load growth of a hybrid existing electrical system, we at first build generation stations (wind, solar or thermical). And secondly in 2025 year, when the system is so meshed, some buses will be very far from production energy, the transits power will be lower than the transmission capacity, and the voltage drop out margin limit of stability. Therefore it is proposed to install Flexible AC Transmission System (FACTS) devices to enhance the transient power stability and quality in the power system. The power flow analysis of Newton Raphson method is performed on a seven (7) bus system with and without static synchronous compensator (STATCOM). The STATCOM is a shunt connected FACTS devices that are useful for reactive power compensation and mitigation of power quality problems in transmission and distribution systems. These investigations indicate the need of power flow analysis and determine best locations of STATCOM on the proposed system. The results of simulation have been programmed in MATLAB and PSS/E Simulator. In the end the expected disturbances and the power quality enhancement of the network in the horizon 2025 were attenuated by integration of STATCOM that is able to supply or absorb reactive power and to maintain the voltage at 1pu.</span>


Sign in / Sign up

Export Citation Format

Share Document