Radio propagation measurements and prediction using three-dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz

1999 ◽  
Vol 48 (3) ◽  
pp. 931-946 ◽  
Author(s):  
Seong-Cheol Kim ◽  
B.J. Guarino ◽  
T.M. Willis ◽  
V. Erceg ◽  
S.J. Fortune ◽  
...  
2020 ◽  
Vol 73 (6) ◽  
pp. 1202-1222 ◽  
Author(s):  
Hoi-Fung Ng ◽  
Guohao Zhang ◽  
Li-Ta Hsu

Global navigation satellite system (GNSS) positioning in dense urban areas remains a challenge due to the signal reflection by buildings, namely multipath and non-line-of-sight (NLOS) reception. These effects degrade the performance of low-cost GNSS receivers such as in those smartphones. An effective three-dimensional (3D) mapping aided GNSS positioning method is proposed to correct the NLOS error. Instead of applying ray-tracing simulation, the signal reflection points are detected based on a skyplot with the surrounding building boundaries. The measurements of the direct and reflected signals can thus be simulated and further used to determine the user's position based on the measurement likelihood between real measurements. Verified with real experiments, the proposed algorithm is able to reduce the computational load greatly while maintaining a positioning accuracy within 10 metres of error in dense urban environments, compared with the conventional method of ray-tracing based NLOS corrected positioning.


GPS Solutions ◽  
2013 ◽  
Vol 18 (3) ◽  
pp. 345-354 ◽  
Author(s):  
Landon Urquhart ◽  
Felipe G. Nievinski ◽  
Marcelo C. Santos

2006 ◽  
Vol 128 (9) ◽  
pp. 945-952 ◽  
Author(s):  
Sandip Mazumder

Two different algorithms to accelerate ray tracing in surface-to-surface radiation Monte Carlo calculations are investigated. The first algorithm is the well-known binary spatial partitioning (BSP) algorithm, which recursively bisects the computational domain into a set of hierarchically linked boxes that are then made use of to narrow down the number of ray-surface intersection calculations. The second algorithm is the volume-by-volume advancement (VVA) algorithm. This algorithm is new and employs the volumetric mesh to advance the ray through the computational domain until a legitimate intersection point is found. The algorithms are tested for two classical problems, namely an open box, and a box in a box, in both two-dimensional (2D) and three-dimensional (3D) geometries with various mesh sizes. Both algorithms are found to result in orders of magnitude gains in computational efficiency over direct calculations that do not employ any acceleration strategy. For three-dimensional geometries, the VVA algorithm is found to be clearly superior to BSP, particularly for cases with obstructions within the computational domain. For two-dimensional geometries, the VVA algorithm is found to be superior to the BSP algorithm only when obstructions are present and are densely packed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mechiel van Manen ◽  
Léon olde Scholtenhuis ◽  
Hans Voordijk

PurposeThis study aims to empirically validate five propositions about the benefits of three-dimensional (3D) visualizations for the management of subsurface utility projects. Specifically, the authors validate whether benefits from 3D in the literature of building construction project management also apply to subsurface utility projects and map them using a taxonomy of project complexity levels.Design/methodology/approachA multiple case study of three utility construction projects was carried out during which the first author was involved in the daily work practices at a utility contractor. 3D visualizations of existing project models were developed, and design and construction meetings were conducted. Practitioners' interactions with and reflections on these 3D visualizations were noted. Observational data from the three project types were matched with the five propositions to determine where benefits of 3D visualizations manifested themselves.FindingsPractitioners found that 3D visualizations had most merit in crowded urban environments when constructing rigid pipelines. All propositions were validated and evaluated as beneficial in subsurface utility projects of complexity level C3. It is shown that in urban projects with rigid pipelines (project with the highest complexity level), 3D visualization prevents misunderstanding or misinterpretations and increases efficiency of coordination. It is recommended to implement 3D visualization approaches in such complex projectsOriginality/valueThere is only limited evidence on the value 3D visualizations in managing utility projects. This study contributes rich empirical evidence on this value based on a six-month observation period at a subsurface contractor. Their merit was assessed by associating 3D approaches with project complexity levels, which may help utility contractors in strategically implementing 3D applications.


2014 ◽  
Vol 711 ◽  
pp. 546-549
Author(s):  
Wei Lin ◽  
Wei Hwa Chiang

Taipei Top Church Auditorium is a hall primarily intended for praise and worship. A three dimensional ray tracing computer simulation was used to provide sound energy distribution on the audience area of the hall, realistic design have been performed. The volume of the hall is 24600m3, which is occupied for 2200 people and equipped the hall with acoustical curtains by modifying its acoustical characteristics. Objective measurements of impulse response are reported, and background noise control and noise isolation are also be considered in the design phase. Reinforcement system is conducted to meet all the activity for the acoustical environments.


Sign in / Sign up

Export Citation Format

Share Document