Broadband characterization of low dielectric constant and low dielectric loss CYTUF cyanate ester printed circuit board material

Author(s):  
A. Deutsch ◽  
C.W. Surovic ◽  
A.P. Lanzetta ◽  
H.A. Ainspan ◽  
J.-C. Abbiate ◽  
...  
2011 ◽  
Vol 216 ◽  
pp. 630-634
Author(s):  
Zeng Ping Zhang ◽  
Yong Wen ◽  
Hong Zhao Du ◽  
Jian Zhong Pei ◽  
Shuan Fa Chen

Methylsilsesquioxane (Me-SSQ) was incorporated into cyanate ester resin (CE) to obtain organic-inorganic hybrids with better dielectric properties in this study. First, methyltriethoxysilane was hydrolyzed and condensed to synthesize Me-SSQ. Then several Me-SSQ/CE hybrids containing different contents of Me-SSQ were prepared. The effect of Me-SSQ content on the dielectric and hot/wet properties of materials was investigated. Results showed that the Me-SSQ/CE hybrid containing 20wt% of Me-SSQ shows a dielectric constant of 2.78, which is much lower than the pure CE resin. At the same time, the dielectric loss of the Me-SSQ/CE hybrids was slightly increased (tanδ<0.006). It indicates that Me-SSQ/CE hybrid is a promising matrix materials for high-performance printed circuit board (PCB).


1996 ◽  
Vol 430 ◽  
Author(s):  
C. J. Reddy ◽  
M. D. Deshpande ◽  
G. A. Hanidu

AbstractA simple waveguide measurement technique is presented to determine the complex permittivity of printed circuit board material. The printed circuit board with metal coating removed from both sides and cut into size which is the same as the cross section of the waveguide is loaded in a short X-band rectangular waveguide. Using a network analyzer, the reflection coefficient of the shorted waveguide(loaded with the sample) is measured. Using the Finite Element Method(FEM) the exact reflection coefficient of the shorted wavguide(loaded with the sample) is determined as a function of dielectric constant. Matching the measured value of the reflection coefficient with the reflection value calculated using FEM and utilizing Newton-Raphson Method, an estimate of the dielectric constant of a printed circuit board material is obtained. A comparison of estimated values of permittivity constant obtained using the present approach with the available data.


1987 ◽  
Vol 108 ◽  
Author(s):  
W. John Balde

EXTENDED ABSTRACTTen years ago, the conventional wisdom as cited by Rex Rice and others was that interconnect wiring on a silicon chip was much less expensive than interconnections on a ceramic hybrid, a printed circuit board, or cable interconnect. That led to a major emphasis on increasing the size and complexity of the silicon chip, with the other interconnect media left for the overflow or leftovers that could not be placed on the chip.A major change of thinking was triggered by Knausenberger and Schaper of AT&T (1), with the realization that costs normalized per inch of wire length were nearly identical for all forms of interconnect. Literally an inch of interconnection circuit costs the same whether that circuit was on silicon or on ceramic, whether that circuit was on a printed circuit board or in cable.If the only important criteria is the length of the interconnect, then a system or a board of the smallest size and area for a given circuit will have the shortest path lengths and the lowest cost. The dominant criteria is the area of the interconnection medium that carries the active silicon.


Sign in / Sign up

Export Citation Format

Share Document