Agent-based system for reconfiguration of distributed chemical reactor network operation

Author(s):  
M.D. Tetiker ◽  
A. Artel ◽  
E. Tatara ◽  
F. Teymour ◽  
M. North ◽  
...  
Author(s):  
I. V. Novosselov ◽  
P. C. Malte ◽  
S. Yuan ◽  
R. Srinivasan ◽  
J. C. Y. Lee

A chemical reactor network (CRN) is developed and applied to a dry low emissions (DLE) industrial gas turbine combustor with the purpose of predicting exhaust emissions. The development of the CRN model is guided by reacting flow computational fluid dynamics (CFD) using the University of Washington (UW) eight-step global mechanism. The network consists of 31 chemical reactor elements representing the different flow and reaction zones of the combustor. The CRN is exercised for full load operating conditions with variable pilot flows ranging from 35% to 200% of the neutral pilot. The NOpilot. The NOx and the CO emissions are predicted using the full GRI 3.0 chemical kinetic mechanism in the CRN. The CRN results closely match the actual engine test rig emissions output. Additional work is ongoing and the results from this ongoing research will be presented in future publications.


Author(s):  
Igor V. Novosselov ◽  
Philip C. Malte

In this paper, the development of an eight-step global chemical kinetic mechanism for methane oxidation with nitric oxide formation in lean-premixed combustion at elevated pressures is described and applied. In particular, the mechanism has been developed for use in computational fluid dynamics (CFD) and chemical reactor network (CRN) simulations of combustion in lean-premixed gas turbine engines. Special attention is focused on the ability of the mechanism to predict NOx and CO exhaust emissions. Applications of the eight-step mechanism are reported in the paper, all for high-pressure, lean-premixed, methane-air (or natural gas-air) combustion. The eight steps of the mechanism are as follows: 1. Oxidation of the methane fuel to CO and H2O. 2. Oxidation of the CO to CO2. 3. Dissociation of the CO2 to CO. 4. Flame NO formation by the Zeldovich and nitrous oxide mechanisms. 5. Flame NO formation by the prompt and NNH mechanisms. 6. Post-flame NO formation by equilibrium H-atom attack on equilibrium N2O. 7. Post-flame NO formation by equilibrium O-atom attack on equilibrium N2O. 8. Post-flame Zeldovich NO formation by equilibrium O-atom attack on N2.


2013 ◽  
Vol 27 (3) ◽  
pp. 1643-1651 ◽  
Author(s):  
Jungkyu Park ◽  
Truc Huu Nguyen ◽  
Daero Joung ◽  
Kang Yul Huh ◽  
Min Chul Lee

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 252
Author(s):  
Maria Angela Agizza ◽  
Ghobad Bagheri ◽  
Sebastian Bürkle ◽  
Tiziano Faravelli ◽  
Steven Wagner ◽  
...  

Oxy-fuel combustion is a promising strategy to minimize the environmental impact of combustion-based energy conversion. Simple and flexible tools are required to facilitate the successful integration of such strategies at the industrial level. This study couples measured residence time distribution with chemical reactor network analysis in a close-to-reality combustor. This provides detailed knowledge about the various mixing and reactive characteristics arising from the use of the two different oxidizing streams.


Sign in / Sign up

Export Citation Format

Share Document