scholarly journals A Universal Predictive Mobility Management Scheme for Urban Ultra-dense Networks with Control/Data Plane Separation

IEEE Access ◽  
2017 ◽  
pp. 1-1 ◽  
Author(s):  
Yang Sun ◽  
Yongyu Chang ◽  
Mengshi Hu ◽  
Tianyi Zeng
Author(s):  
Soumya Ranjan Samal ◽  
Shuvabrata Bandopadhaya ◽  
Kaliprasanna Swain ◽  
Vladimir Poulkov

This paper has analysed the mobility management schemes in heterogenous cellular networks (HCNs) considering their power consumptions and network selection delays. The HCNs are the key enabler for 5G cellular network to ensure better user connectivity in ultra-dense networks. Large numbers of small cells are deployed under a macro-cell targeting network hot spot. However, ensuring seamless coverage to the mobile subscribers in motion is challenging in such networks. Frequent handoff between the cells with different bandwidth, throughput, latency, and coverage penetrations, significantly increases the signalling overhead in network. In this context, an efficient mobility management scheme plays a key role for the success of HCN technology. In this paper, a detailed behavioural study of mobility management schemes used in HCN has been provided. For mobile users in the network, the power consumption and network selection delay has been evaluated for k-tier architecture of HCN.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Abhishek Majumder ◽  
Sudipta Roy

Seamless mobility management of the mesh clients (MCs) in wireless mesh network (WMN) has drawn a lot of attention from the research community. A number of mobility management schemes such as mesh network with mobility management (MEMO), mesh mobility management (M3), and wireless mesh mobility management (WMM) have been proposed. The common problem with these schemes is that they impose uniform criteria on all the MCs for sending route update message irrespective of their distinct characteristics. This paper proposes a session-to-mobility ratio (SMR) based dynamic mobility management scheme for handling both internet and intranet traffic. To reduce the total communication cost, this scheme considers each MC’s session and mobility characteristics by dynamically determining optimal threshold SMR value for each MC. A numerical analysis of the proposed scheme has been carried out. Comparison with other schemes shows that the proposed scheme outperforms MEMO,M3, and WMM with respect to total cost.


Author(s):  
László Bokor ◽  
Zoltán Faigl ◽  
Sándor Imre

This paper is committed to give an overview of the Host Identity Protocol (HIP), to introduce the basic ideas and the main paradigms behind it, and to make an exhaustive survey of mobility management schemes in the Host Identity Layer. The authors' goal is to show how HIP emerges from the list of potential alternatives with its wild range of possible usability, complex feature set and power to create a novel framework for future Mobile Internet architectures. In order to achieve this, the authors also perform an extensive simulation evaluation of four selected mobility solutions in the Host Identity Layer: the standard HIP mobility/multihoming (RFC5206), a micromobility solution (µHIP), a network mobility management scheme (HIP-NEMO) and a proactive, cross-layer optimized, distributed proposal designed for flat architectures (UFA-HIP).


Sign in / Sign up

Export Citation Format

Share Document