scholarly journals A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 21954-21961 ◽  
Author(s):  
Chuanlong Yin ◽  
Yuefei Zhu ◽  
Jinlong Fei ◽  
Xinzheng He
2021 ◽  
pp. 29-42
Author(s):  
admin admin ◽  
◽  
◽  
Adnan Mohsin Abdulazeez

With the development of technology and smart devices in the medical field, the computer system has become an essential part of this development to learn devices in the medical field. One of the learning methods is deep learning (DL), which is a branch of machine learning (ML). The deep learning approach has been used in this field because it is one of the modern methods of obtaining accurate results through its algorithms, and among these algorithms that are used in this field are convolutional neural networks (CNN) and recurrent neural networks (RNN). In this paper we reviewed what have researchers have done in their researches to solve fetal problems, then summarize and carefully discuss the applications in different tasks identified for segmentation and classification of ultrasound images. Finally, this study discussed the potential challenges and directions for applying deep learning in ultrasound image analysis.


2020 ◽  
Author(s):  
Zhengqiao Zhao ◽  
Stephen Woloszynek ◽  
Felix Agbavor ◽  
Joshua Chang Mell ◽  
Bahrad A. Sokhansanj ◽  
...  

AbstractRecurrent neural networks (RNNs) with memory (e.g. LSTMs) and attention mechanisms are widely used in natural language processing because they can capture short and long term sequential information for diverse tasks. We propose an integrated deep learning model for microbial DNA sequence data, which exploits convolutional networks, recurrent neural networks, and attention mechanisms to perform sample-associated attribute prediction—phenotype prediction—and extract interesting features, such as informative taxa and predictive k-mer context. In this paper, we develop this novel deep learning approach and evaluate its application to amplicon sequences. We focus on typically short DNA reads of 16s ribosomal RNA (rRNA) marker genes, which identify the heterogeneity of a microbial community sample. Our deep learning approach enables sample-level attribute and taxonomic prediction, with the aim of aiding biological research and supporting medical diagnosis. We demonstrate that our implementation of a novel attention-based deep network architecture, Read2Pheno, achieves read-level phenotypic prediction and, in turn, that aggregating read-level information can robustly predict microbial community properties, host phenotype, and taxonomic classification, with performance comparable to conventional approaches. Most importantly, as a further result of the training process, the network architecture will encode sequences (reads) into dense, meaningful representations: learned embedded vectors output on the intermediate layer of the network model, which can provide biological insight when visualized. Finally, we demonstrate that a model with an attention layer can automatically identify informative regions in sequences/reads which are particularly informative for classification tasks. An implementation of the attention-based deep learning network is available at https://github.com/EESI/sequence_attention.


Cyber security threats are an ever increasing, frequent and complex issue in the modern information era. With the advent of big data, incremental increase of huge amounts of data has further increased the security problems. Intrusion Detection Systems (IDS) were been developed to monitor and secure the cyber data systems and networks from any intrusions. However, the intrusion detection is difficult due to the rapid evolution of security attacks and the high volume, variety and speed of big data. In addition, the shallow architectures of existing IDS models lead to high computation cost and high memory requirements, thus further diminishing the efficiency of intrusion detection. The recent studies have suggested the use of data analytics and the deep learning algorithms can be effective in improving the IDS. An efficient IDS model is developed in this study by using the improved Elman-type Recurrent Neural Networks (RNN) in which the Improved Chicken Swarm Optimization (ICSO) optimally determines RNN parameters. RNN is an efficient method for classifying network traffic data but its traditional training algorithms are slow in convergence and faces local optimum problem. The introduction of ICSO with enhanced global search ability significantly avoids those limitations and improves the training process of RNN. This optimized deep learning algorithm of RNN, named as ICSO-RNN, is employed in the IDS with Intuitionistic Fuzzy Mutual Information feature selection to analyze larger network traffic datasets. The proposed IDS model using ICSO-RNN is tested on UNSW NB15 dataset. The final outcomes suggested that ICSO-RNN model has high performance in intrusion detection, with minimum training time and is proficient for big data


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document