scholarly journals An Adaptive Terminal Sliding Mode Control for Robot Manipulators With Non-Singular Terminal Sliding Surface Variables

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 8701-8712 ◽  
Author(s):  
Anh Tuan Vo ◽  
Hee-Jun Kang
2021 ◽  
Author(s):  
Normaisharah Mamat ◽  
Mohd Fauzi Othman ◽  
Mohd Fitri Mohd Yakub

Abstract Building structures are prone to damage due to natural disasters, and this challenges structural engineers to design safer and more robust building structures. This study is conducted to prevent these consequences by implementing a control strategy that can enhance a building's stability and reduce the risk of damage. Therefore, to realize the structural integrity of a building, a hybrid control device is equipped with control strategies to enhance robustness. The control strategy proposed in this study is adaptive nonsingular terminal sliding mode control (ANTSMC). ANTSMC is an integrated controller of radial basis function neural network (RBFNN) and nonsingular terminal sliding mode control (NTSMC), which has a fast dynamic response, finite-time convergence, and the ability to enhance the control performance against a considerable uncertainty. The proposed controller is designed based on the sliding surface and the control law. The building with a two-degree-of-freedom (DOF) system is designed in Matlab/Simulink and validated with the experimental work connected to the LMSTest.Lab software. The performance of this controller is compared with those of the terminal sliding mode control (TSMC) and NTSMC in terms of the displacement response, sliding surface, and the probability of damage. The result showed that the proposed controller, ANTSMC can suppress vibrations up to 46%, and its percentage probability of complete damage is 15% from the uncontrolled structure. Thus, these findings are imperative towards increasing the safety level in building structures and occupants, and reducing damage costs in the event of a disaster.


Author(s):  
Moussa Labbadi ◽  
Mohamed Djemai ◽  
Sahbi Boubaker

In this article, a new dynamic non-singular terminal sliding mode control technique for a quadrotor system subjected to external disturbances is evaluated. The offered control approach is based on non-singular terminal sliding mode controller combined with proportional–integral–derivative sliding surface to improve the performance. The proposed controller is formulated using the Lyapunov theory which ensured the existence of the sliding mode surfaces in finite time. Furthermore, the chattering problem, caused by the switching position and attitude laws, has been reduced using the proposed controller. Moreover, a high-precision performance trajectory tracking can be obtained. The problem of the disturbances is addressed using the suggested controller. Simulation results show the feasibility and efficiency of the non-singular terminal sliding mode control-proportional–integral–derivative proposed approach.


Author(s):  
Moharam Habibnejad Korayem ◽  
Reza Shiri ◽  
Saeed Rafee Nekoo ◽  
Zohair Fazilati

Purpose The purpose of this paper is to propose an indirect design for sliding surface as a function of position and velocity of each joint (for mounted manipulator on base) and center of mass of mobile base which includes rotation of wheels. The aim is to control the mobile base and its mounted arms using a unified sliding surface. Design/methodology/approach A new implementation of sliding mode control has been proposed for wheeled mobile manipulators, regulation and tracking cases. In the conventional sliding mode design, the position and velocity of each coordinate are often considered as the states in the sliding surface, and consequently, the input control is found based on them. A mobile robot consisted of non-holonomic constraints, makes the definition of the sliding surface more complex and it cannot simply include the coordinates of the system. Findings Formulism of both sliding mode control and non-singular terminal sliding mode control were presented and implemented on Scout robot. The simulations were validated with experimental studies, which led to satisfactory analysis. The non-singular terminal sliding mode control actually had a better performance, as it was illustrated that at time 10 s, the error for that was only 8.4 mm, where the error for conventional sliding mode control was 11.2 mm. Originality/value This work proposes sliding mode and non-singular terminal sliding mode control structure for wheeled mobile robot with a sliding surface including state variables: center of mass of base, wheels’ rotation and arm coordinates.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Weifeng Yan ◽  
Juntao Fei

An adaptive global fast terminal sliding mode control (GFTSM) is proposed for tracking control of Micro-Electro-Mechanical Systems (MEMS) vibratory gyroscopes under unknown model uncertainties and external disturbances. To improve the convergence rate of reaching the sliding surface, a global fast terminal sliding surface is employed which can integrate the advantages of traditional sliding mode control and terminal sliding mode control. It can be guaranteed that sliding surface and equilibrium point can be reached in a shorter finite time from any initial state. In the presence of unknown upper bound of system nonlinearities, an adaptive global fast terminal sliding mode controller is derived to estimate this unknown upper bound. Simulation results demonstrate that the tracking error can be attenuated efficiently and robustness of the control system can be improved with the proposed adaptive global fast terminal sliding mode control.


Sign in / Sign up

Export Citation Format

Share Document