scholarly journals Effects of Button Width, Height, and Location on a Soft Keyboard: Task Completion Time, Error Rate, and Satisfaction in Two-Thumb Text Entry on Smartphone

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 69848-69857
Author(s):  
Joonho Chang ◽  
Kihyo Jung
2020 ◽  
Vol 103 (4) ◽  
pp. 003685042096288
Author(s):  
Mingyin Jiang ◽  
Dongjie Sun ◽  
Qiang Li ◽  
Daoxiong Wang

Poor usability designed of ventilator user interface can easily lead to human error. In this study, we evaluated the usability design of ventilator maintenance user interface and identified problems related to the usability of user interface that could easily cause human error. Sixteen respiratory therapists participated in this usability study. The usability of the ventilator maintenance user interface was evaluated by participants’ task performance (task completion time, task error rate), physiological workload (eye-fixation duration) and perceived workload (NASA-TLX), and user experience (questionnaire). For task performance, task completion time and task error rate showed significant differences. For task completion time, significant difference was found when conducting ventilator self-test ( p < 0.001), replace the breathing circuit ( p = 0.047), and check battery status ( p = 0.005). For task error rate, the three ventilators showed significant difference ( p = 0.012), and the Serov I showed a significantly higher task error rate than the Boaray 5000D ( p = 0.031). For workload, the Serov I was associated with higher physiological and perceived workloads than other ventilators ( p < 0.05). For user experience, the Boaray 5000D received better scores among the ventilators in terms of ease to maintain, friendly to maintain, and willingness to use ( p < 0.05, respectively). Our study adds available literature for usability evaluation of ventilator maintenance user interface. The results indicate that the maintenance user interface of the Boaray 5000D performed better than the other two tested ventilators. Moreover, the study results also proved that eye-fixation duration can be a reliable tool for evaluating the usability of ventilator user interface.


Author(s):  
Auður Anna Jónsdóttir ◽  
Ziho Kang ◽  
Tianchen Sun ◽  
Saptarshi Mandal ◽  
Ji-Eun Kim

Objective The goal of this study is to model the effect of language use and time pressure on English as a first language (EFL) and English as a second language (ESL) students by measuring their eye movements in an on-screen, self-directed learning environment. Background Online learning is becoming integrated into learners’ daily lives due to the flexibility in scheduling and location that it offers. However, in many cases, the online learners often have no interaction with one another or their instructors, making it difficult to determine how the learners are reading the materials and whether they are learning effectively. Furthermore, online learning may pose challenges to those who face language barriers or are under time pressure. Method The effects of two factors, language use (EFL vs. ESL) and time constraints (high vs. low time pressure), were investigated during the presentation of online materials. The effects were analyzed based on eye movement measures (eye fixation rate—the total number of eye fixations divided by the task duration and gaze entropy) and behavioral measures (correct rate and task completion time). Results The results show that the ESL students had higher eye fixation rates and longer task completion times than the EFL students. Moreover, high time pressure resulted in high fixation rates, short task completion time, low correct rates, and high gaze entropy. Conclusion and Application The results suggest the possibility of using unobtrusive eye movement measures to develop ways to better assist those who struggle with learning in the online environment.


Author(s):  
Daniela Chanci ◽  
Naveen Madapana ◽  
Glebys Gonzalez ◽  
Juan Wachs

The choice of best gestures and commands for touchless interfaces is a critical step that determines the user- satisfaction and overall efficiency of surgeon computer interaction. In this regard, usability metrics such as task completion time, error rate, and memorability have a long-standing as potential entities in determining the best gesture vocabulary. In addition, some previous works concerned with this problem have utilized qualitative measures to identify the best gesture. In this work, we hypothesize that there is a correlation between the qualitative properties of gestures (v) and their usability metrics (u). Therefore, we conducted an experiment with linguists to quantify the properties of the gestures. Next, a user study was conducted with surgeons, and the usability metrics were measured. Lastly, linear and non-linear regression techniques were used to find the correlations between u and v. Results show that usability metrics are correlated with the gestures’ qualitative properties ( R2 = 0.4).


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1774
Author(s):  
Ming-Chin Chuang ◽  
Chia-Cheng Yen ◽  
Chia-Jui Hung

Recently, with the increase in network bandwidth, various cloud computing applications have become popular. A large number of network data packets will be generated in such a network. However, most existing network architectures cannot effectively handle big data, thereby necessitating an efficient mechanism to reduce task completion time when large amounts of data are processed in data center networks. Unfortunately, achieving the minimum task completion time in the Hadoop system is an NP-complete problem. Although many studies have proposed schemes for improving network performance, they have shortcomings that degrade their performance. For this reason, in this study, we propose a centralized solution, called the bandwidth-aware rescheduling (BARE) mechanism for software-defined network (SDN)-based data center networks. BARE improves network performance by employing a prefetching mechanism and a centralized network monitor to collect global information, sorting out the locality data process, splitting tasks, and executing a rescheduling mechanism with a scheduler to reduce task completion time. Finally, we used simulations to demonstrate our scheme’s effectiveness. Simulation results show that our scheme outperforms other existing schemes in terms of task completion time and the ratio of data locality.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 395
Author(s):  
Chien-Hsiung Chen ◽  
Miao Huang

This study investigated the impacts of different notification modalities used in low and high ambient sound environments for mobile phone interaction. Three different notification modalities—Shaking Visual, Shaking Visual + Vibration, and Vibration—were designed and experimentally tested by asking users to conduct a maze task. A total of 72 participants were invited to take part in the experiment through the convenience sampling method. The generated results indicated that (1) the notification modality affects participants’ task completion time, (2) the error rate pertinent to the number of notifications is positively related to the participants’ task completion time, and (3) the ambient sound level and notification modalities impact the overall experience of the participants. The main contributions of this study are twofold. First, it verifies that the multi-dimensional feature of a Shaking Visual + Vibration synesthesia notification design is implementable. Second, this study demonstrated that the synesthesia notification could be feasible for mobile notification, and it was more perceptible by the users.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fanghai Gong

In recent years, cloud workflow task scheduling has always been an important research topic in the business world. Cloud workflow task scheduling means that the workflow tasks submitted by users are allocated to appropriate computing resources for execution, and the corresponding fees are paid in real time according to the usage of resources. For most ordinary users, they are mainly concerned with the two service quality indicators of workflow task completion time and execution cost. Therefore, how cloud service providers design a scheduling algorithm to optimize task completion time and cost is a very important issue. This paper proposes research on workflow scheduling based on mobile cloud computing machine learning, and this paper conducts research by using literature research methods, experimental analysis methods, and other methods. This article has deeply studied mobile cloud computing, machine learning, task scheduling, and other related theories, and a workflow task scheduling system model was established based on mobile cloud computing machine learning from different algorithms used in processing task completion time, task service costs, task scheduling, and resource usage The situation and the influence of different tasks on the experimental results are analyzed in many aspects. The algorithm in this paper speeds up the scheduling time by about 7% under a different number of tasks and reduces the scheduling cost by about 2% compared with other algorithms. The algorithm in this paper has been obviously optimized in time scheduling and task scheduling.


Sign in / Sign up

Export Citation Format

Share Document