scholarly journals Impulsive Synchronization of Fractional-Order Chaotic Systems With Actuator Saturation and Control Gain Error

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 36113-36119 ◽  
Author(s):  
Tiedong Ma ◽  
Wei Luo ◽  
Zhengle Zhang ◽  
Zhenyu Gu
2017 ◽  
Vol 90 (3) ◽  
pp. 1519-1533 ◽  
Author(s):  
Ouerdia Megherbi ◽  
Hamid Hamiche ◽  
Saïd Djennoune ◽  
Maamar Bettayeb

2019 ◽  
Vol 25 (10) ◽  
pp. 1614-1628 ◽  
Author(s):  
Xingpeng Zhang ◽  
Dong Li ◽  
Xiaohong Zhang

In this paper, a new lemma is proposed to study the stability of a fractional order complex chaotic system without dividing the complex number into real and imaginary parts. The proving process of the new lemma combines the fundamental properties of the complex field and the fractional order extension of the Lyapunov direct method. It extends the fractional order extension of the Lyapunov direct method from the real number field to the complex number field. Based on the new lemma, we propose a new impulsive synchronization scheme for fractional order complex chaotic systems. The numerical simulation results also show the validity of our conclusion.


Author(s):  
Ali Soleimanizadeh

In this paper synchronization problem for two different fractional-order chaotic systems has been investigated. Based on fractional calculus, optimality conditions for this synchronization have been achieved. Synchronization Time and control signals are two factors that are optimized. After that, the synchronization method is applied in secure communication. Finally using the simulation example, the performance of the proposed method for synchronization and chaotic masking is shown.


Author(s):  
Tsung-Chih Lin ◽  
Chia-Hao Kuo ◽  
Valentina E. Balas

In this paper, in order to achieve tracking performance of uncertain fractional order chaotic systems an adaptive hybrid fuzzy controller is proposed. During the design procedure, a hybrid learning algorithm combining sliding mode control and Lyapunov stability criterion is adopted to tune the free parameters on line by output feedback control law and adaptive law. A weighting factor, which can be adjusted by the trade-off between plant knowledge and control knowledge, is adopted to sum together the control efforts from indirect adaptive fuzzy controller and direct adaptive fuzzy controller. To confirm effectiveness of the proposed control scheme, the fractional order chaotic response system is fully illustrated to track the trajectory generated from the fractional order chaotic drive system. The numerical results show that tracking error and control effort can be made smaller and the proposed hybrid intelligent control structure is more flexible during the design process.


2015 ◽  
Vol 64 (7) ◽  
pp. 070503 ◽  
Author(s):  
Liu Heng ◽  
Li Sheng-Gang ◽  
Sun Ye-Guo ◽  
Wang Hong-Xing

2012 ◽  
Vol 1 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Tsung-Chih Lin ◽  
Chia-Hao Kuo

This paper presents an adaptive hybrid fuzzy controller to achieve prescribed tracking performance of fractional order chaotic systems. Depending on plant knowledge and control knowledge, a weighting factor can be adjusted by combining the indirect adaptive fuzzy control effort and the direct fuzzy adaptive control effort. Nonlinear fractional order chaotic response system is fully demonstrated to track the trajectory generated from fractional order chaotic drive system. The numerical results show that tracking error and control effort can be made smaller and the proposed hybrid intelligent control scheme is more flexible during the design process.


2015 ◽  
Vol 24 (10) ◽  
pp. 100502 ◽  
Author(s):  
Leung Y. T. Andrew ◽  
Li Xian-Feng ◽  
Chu Yan-Dong ◽  
Zhang Hui

Sign in / Sign up

Export Citation Format

Share Document