scholarly journals SECURE COMMUNICATION USING THE SYNCHRONIZATION OF TWO FRACTIONAL-ORDER CHAOTIC SYSTEMS WITH ORDER CHANGES USING THE FINITE-TIME OPTIMAL CONTROL APPROACH

Author(s):  
Ali Soleimanizadeh

In this paper synchronization problem for two different fractional-order chaotic systems has been investigated. Based on fractional calculus, optimality conditions for this synchronization have been achieved. Synchronization Time and control signals are two factors that are optimized. After that, the synchronization method is applied in secure communication. Finally using the simulation example, the performance of the proposed method for synchronization and chaotic masking is shown.

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Lin Wang ◽  
Chunzhi Yang

Synchronization problem for a class of uncertain fractional order chaotic systems is studied. Some fundamental lemmas are given to show the boundedness of a complicated infinite series which is produced by differentiating a quadratic Lyapunov function with fractional order. By using the fractional order extension of the Lyapunov stability criterion and the proposed lemma, stability of the closed-loop system is analyzed, and two sufficient conditions, which can enable the synchronization error to converge to zero asymptotically, are driven. Finally, an illustrative example is presented to confirm the proposed theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Kaijiang Yu ◽  
Junqi Yang

This paper presents a real-time optimal control approach for the energy management problem of hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) with slope information during car following. The new features of this study are as follows. First, the proposed method can optimize the engine operating points and the driving profile simultaneously. Second, the proposed method gives the freedom of vehicle spacing between the preceding vehicle and the host vehicle. Third, using the HEV/PHEV property, the desired battery state of charge is designed according to the road slopes for better recuperation of free braking energy. Fourth, all of the vehicle operating modes engine charge, electric vehicle, motor assist and electric continuously variable transmission, and regenerative braking, can be realized using the proposed real-time optimal control approach. Computer simulation results are shown among the nonlinear real-time optimal control approach and the ADVISOR rule-based approach. The conclusion is that the nonlinear real-time optimal control approach is effective for the energy management problem of the HEV/PHEV system during car following.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350030 ◽  
Author(s):  
SHIU-PING WANG ◽  
SENG-KIN LAO ◽  
HSIEN-KENG CHEN ◽  
JUHN-HORNG CHEN ◽  
SHIH-YAO CHEN

In recent years, there has been expanding research on the applications of fractional calculus to the areas of signal processing, modeling and controls. Analog circuit implementation of chaotic systems is used in studying nonlinear dynamical phenomena, which is also applied in realizing the controller development. In this paper, chain fractance and tree fractance circuits are constructed to realize the fractional-order Chen–Lee system. The results are in good agreement with those obtained from numerical simulation. This study shows that not only is this system related to gyro motion but can also be applied to electronic circuits for secure communication.


Sign in / Sign up

Export Citation Format

Share Document