scholarly journals Multi-Surrogate Collaboration Approach for Creep-Fatigue Reliability Assessment of Turbine Rotor

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 39861-39874 ◽  
Author(s):  
Lu-Kai Song ◽  
Guang-Chen Bai
2019 ◽  
Vol 76 ◽  
pp. 263-278 ◽  
Author(s):  
Xuanchen Zhu ◽  
Haofeng Chen ◽  
Fuzhen Xuan ◽  
Xiaohui Chen

Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 1967-1978
Author(s):  
Xue-Qin Li ◽  
Guang-Chen Bai ◽  
Lu-Kai Song ◽  
Jie Wen

2021 ◽  
Vol 153 (A4) ◽  
Author(s):  
Y Garbatov ◽  
C Guedes Soares

This work deals with the fatigue reliability assessment of a welded joint in a longitudinal stiffener of trapezoidal shape in a very fast ferry. Based on the analysis of wave and cargo induced loads the ship hull structure is evaluated. The local structure is represented by a longitudinal stiffener with a trapezoidal transverse section. The critical hot-spots and the stress distributions are defined by FEM. The fatigue damage assessment of considered hot spots is analysed accounting for the combination of wave induced and car-breaking transient loadings. The formulation for the assessment of the welded steel joint is based on the S-N approach and FORM/SORM techniques are applied to evaluate the reliability against fatigue failure accounting for corrosion deterioration. The structural system composed by several hot spots is evaluated as a series system based on second order reliability bounds.


2001 ◽  
Vol 23 (10) ◽  
pp. 1203-1211 ◽  
Author(s):  
Sang-Hyo Kim ◽  
Sang-Woo Lee ◽  
Ho-Seong Mha

2018 ◽  
Vol 28 (3) ◽  
pp. 455-477 ◽  
Author(s):  
WZ Wang ◽  
YZ Liu

The aim of this study is to analyze the creep–fatigue interaction behavior of a steam turbine rotor under idealized cyclic thermomechanical loading conditions. A Chaboche model-based material constitutive model is applied to simulate the multiaxial stress–strain behavior in the rotor. Influence of accumulated damage during the whole iterations on the creep–fatigue interaction behavior is described by continuum damage mechanics. Analysis of the temperature and stress variations during the startup phase reveals that the startup phase can be divided into a condensation phase, a high steam flux phase, and an elevated temperature phase and that thermal stress reaches its maximum value in the condensation phase. In addition, creep–fatigue interaction in the rotor leads to a gradual decrease in the maximum stress; furthermore, comparison of the von Mises stress displays that the impact of damage accumulation results in the shift of the location with the maximum stress. Investigation of creep–fatigue damage discloses that the total damage is concentrated on the steam inlet notch zone and the blade groove of the first and third stages.


Sign in / Sign up

Export Citation Format

Share Document