scholarly journals Design and Modeling of a Magnetic-Coupling Monostable Piezoelectric Energy Harvester Under Vortex-Induced Vibration

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 108913-108927 ◽  
Author(s):  
Chengwei Hou ◽  
Xiaobiao Shan ◽  
Leian Zhang ◽  
Rujun Song ◽  
Zhengbao Yang
2017 ◽  
Vol 110 (16) ◽  
pp. 163905 ◽  
Author(s):  
Hai Wang ◽  
Feng Hu ◽  
Ke Wang ◽  
Yan Liu ◽  
Wei Zhao

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3101
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Tao Xie

This paper proposes a novel and efficient energy harvester (EH) system, for capturing simultaneously flutter and vortex-induced vibration. There exists a coupling effect between flexible spring energy harvester (FSEH) and cantilever beam energy harvester (CBEH) in aerodynamic response and output characteristic. Many prototypes of the harvester were manufactured to explore the coupling effect in a wind tunnel. The experimental results demonstrate that FSEH is mainly subjected to flutter-induced vibration and CBEH undergoes vortex-induced vibration. Disturbance of FSEH first takes place, a limited oscillation cycle then occurs, and chaos ultimately happens as airflow velocity increase. Root mean square voltages are more than 11 V for FSEH at beyond 10.52 m/s, which shows the better output performance over the existing harvesters. Vibration response and output voltage of various harvesters are mutually enhanced with each other. An enhancing ratio for FSEH-130-25 is up to 69.6% over FSEH-130-0, while the enhancing ratio for CBEH-130-30 is 198.3% compared to CBEH-0-30. Field application testing manifests that discharging time to power the pedometer is almost twice as long as the charging one for FSEH-130-25 at 14.48 m/s. The current research offers a suggestive guidance for promoting future practical application in micro airfoil aircrafts.


2021 ◽  
Vol 585 (1) ◽  
pp. 128-138
Author(s):  
Jinpeng Meng ◽  
Xingwen Fu ◽  
Chongqiu Yang ◽  
Leian Zhang ◽  
Xianhai Yang ◽  
...  

Energy ◽  
2021 ◽  
pp. 121734
Author(s):  
Xiaozhen Du ◽  
Mi Zhang ◽  
Heng Chang ◽  
Yu Wang ◽  
Hong Yu

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zunlong Jin ◽  
Guoping Li ◽  
Junlei Wang ◽  
Zhien Zhang

Since the energy demand increases, the sources of fluid energy such as wind energy and marine energy have attracted widespread attention, especially vortex-induced vibrations excited by wind energy. It is well known that the lock-in effect in vortex-induced vibration can be applied to the piezoelectric energy harvester. Although numerous researches have been conducted on piezoelectric energy harvesting devices in recent years, a common problem of low bandwidth and harvesting efficiency still exists. In order to increase the response amplitude and decrease the threshold wind speed of vortex-induced vibration, a bionic attachment structure is proposed based on the experimental method. In the present work, twelve models are designed according to the size of pits and hemispheric protrusions which are added to the surface of a flexible smooth cylinder. Compared with the smooth cylinder which is taken as a carrier, the harvester with the bionic structure shows stronger energy capture performance on the whole. As the threshold speed decelerates from 1.8m/s to 1 m/s, the bandwidth, on the contrary, increases from 39.3% to 51.4%. Particularly, for the 10 mm pits structure with 5 columns, its peak voltage can reach 47 V, and its peak power can reach 1.21 mW with a resistance of 800 kΩ, 0.57 mW higher than that of the smooth cylinder. Comparatively speaking, the hemispherical projections structure figures with a much more different energy capturing characteristic. Starting from the column, the measured voltage of the hemispherical bionic harvester is much smaller than that of the smooth cylinder, with a peak voltage less than 15 V and a reducing bandwidth. However, compared with the smooth cylinder, hemispheric projections with 3 columns have a better energy capture effect with a measured voltage of 35V, a resistance of 800kΩ, and a wind speed of 3.097 m/s. Besides, its output power also enhances from 0.48 to 0.56 mW.


Sign in / Sign up

Export Citation Format

Share Document