scholarly journals Enhancing Performance of a Piezoelectric Energy Harvester System for Concurrent Flutter and Vortex-Induced Vibration

Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3101
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Tao Xie

This paper proposes a novel and efficient energy harvester (EH) system, for capturing simultaneously flutter and vortex-induced vibration. There exists a coupling effect between flexible spring energy harvester (FSEH) and cantilever beam energy harvester (CBEH) in aerodynamic response and output characteristic. Many prototypes of the harvester were manufactured to explore the coupling effect in a wind tunnel. The experimental results demonstrate that FSEH is mainly subjected to flutter-induced vibration and CBEH undergoes vortex-induced vibration. Disturbance of FSEH first takes place, a limited oscillation cycle then occurs, and chaos ultimately happens as airflow velocity increase. Root mean square voltages are more than 11 V for FSEH at beyond 10.52 m/s, which shows the better output performance over the existing harvesters. Vibration response and output voltage of various harvesters are mutually enhanced with each other. An enhancing ratio for FSEH-130-25 is up to 69.6% over FSEH-130-0, while the enhancing ratio for CBEH-130-30 is 198.3% compared to CBEH-0-30. Field application testing manifests that discharging time to power the pedometer is almost twice as long as the charging one for FSEH-130-25 at 14.48 m/s. The current research offers a suggestive guidance for promoting future practical application in micro airfoil aircrafts.

Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 725
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Ju Feng ◽  
Tao Xie

This paper presents a novel airfoil-based piezoelectric energy harvester (EH) with two small square prisms attached to an airfoil. This harvester can achieve a two degree-of-freedom (DOF) plunge–pitch motions. Several prototypes of energy harvester were fabricated to explore the nonlinear aerodynamic response and the output performance in a wind tunnel. The experimental results showed that the longer the flexible spring was, the lower the critical velocity and frequency of the harvester were, and the better aerodynamic response and output performance could be achieved. The initial disturbance, the following limit-cycle oscillation, and the ultimate chaos of nonlinear response occurred, as increasing airflow velocity was increased. The overall output performance of the harvesters with a flexible spring having a thickness of 1 mm outperformed than that of the harvesters with a flexible spring having a thickness of 0.5 mm at a higher airflow velocity, while the tendency was opposite at a lower velocity. An optimum output voltage of 17.48 V and a power of 0.764 mW were harvested for EH-160-1 at 16.32 m/s, which demonstrated it possessed better performance than the other harvesters. When the capacitor was charged for 45 s and directly drove a sensor, it could maintain working for 17 s to display temperature and humidity in real time.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 640
Author(s):  
Nannan Zhou ◽  
Rongqi Li ◽  
Hongrui Ao ◽  
Chuanbing Zhang ◽  
Hongyuan Jiang

With the rapid development of microelectronics technology, low-power electronic sensors have been widely applied in many fields, such as Internet of Things, aerospace, and so on. In this paper, a symmetrical ring-shaped piezoelectric energy harvester (SR-PEH) is designed to provide energy for the sensor to detect the ambient temperature. The finite element method is used by utilizing software COMSOL 5.4, and the electromechanical coupling model of the piezoelectric cantilever is established. The output performance equations are proposed; the microelectromechanical system (MEMS) integration process of the SR-PEH, circuit, and sensor is stated; and the changing trend of the output power density is explained from an energy perspective. In the logarithmic coordinate system, the results indicate that the output voltage and output power are approximately linear with the temperature when the resistance is constant. In addition, the growth rate of the output voltage and output power decreases with an increase of resistance under the condition of constant temperature. In addition, with an increase of temperature, the growth rate of the output power is faster than that of the output voltage. Furthermore, resistance has a more dramatic effect on the output voltage, whereas temperature has a more significant effect on the output power. More importantly, the comparison with the conventional cantilever-shaped piezoelectric energy harvester (CC-PEH) shows that the SR-PEH can improve the output performance and broaden the frequency band.


2021 ◽  
Vol 585 (1) ◽  
pp. 128-138
Author(s):  
Jinpeng Meng ◽  
Xingwen Fu ◽  
Chongqiu Yang ◽  
Leian Zhang ◽  
Xianhai Yang ◽  
...  

Energy ◽  
2021 ◽  
pp. 121734
Author(s):  
Xiaozhen Du ◽  
Mi Zhang ◽  
Heng Chang ◽  
Yu Wang ◽  
Hong Yu

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2387
Author(s):  
Quan Wang ◽  
Kyung-Bum Kim ◽  
Sang-Bum Woo ◽  
Yooseob Song ◽  
Tae-Hyun Sung

Piezoelectric energy harvesters have attracted much attention because they are crucial in portable industrial applications. Here, we report on a high-power device based on a magneto-mechanical piezoelectric energy harvester to scavenge the AC magnetic field from a power-line cable for industrial applications. The electrical output performance of the harvester (×4 layers) reached an output voltage of 60.8 Vmax, an output power of 215 mWmax (98 mWrms), and a power density of 94.5 mWmax/cm3 (43.5 mWrms/cm3) at an impedance matching of 5 kΩ under a magnetic field of 80 μT. The multilayer energy harvester enables high-output performance, presenting an obvious advantage given this improved level of output power. Finite element simulations were also performed to support the experimental observations. The generator was successfully used to power a wireless sensor network (WSN) for use on an IoT device composed of a temperature sensor in a thermal power station. The result shows that the magneto-mechanical piezoelectric energy harvester (MPEH) demonstrated is capable of meeting the requirements of self-powered monitoring systems under a small magnetic field, and is quite promising for use in actual industrial applications.


MRS Advances ◽  
2017 ◽  
Vol 2 (56) ◽  
pp. 3415-3420 ◽  
Author(s):  
Changyeon Baek ◽  
Hyeonbin Park ◽  
Jong Hyuk Yun ◽  
Do Kyung Kim ◽  
Kwi-Il Park

ABSTRACTVertically aligned BaTiO3 nanowire (NW) arrays on a Ti substrate were adopted for use in piezoelectric energy harvesting device that scavenges electricity from mechanical energy. BaTiO3 NWs were simultaneously grown at the top and bottom surfaces of a Ti substrate by two-step hydrothermal process. To characterized the piezoelectric output performance of the individual NW, we transferred a BaTiO3 single NW that was selected from well-aligned NW arrays onto a flexible substrate and measured the electric signals during the bending/unbending motions. For fabricating a piezoelectric energy harvester (PEH), both NW arrays were sandwiched between two transparent indium tin oxide (ITO)-coated polyethylene terephthalate (PET) plastic films and then packaged with polydimethylsiloxane (PDMS) elastomer. A lead-free BaTiO3 NW array-based PEH produced an output voltage of about 90 V and a maximum current of 1.2 μA under periodically bending motions.


Sign in / Sign up

Export Citation Format

Share Document