scholarly journals Design, Modeling, and Experiments of the Vortex-Induced Vibration Piezoelectric Energy Harvester with Bionic Attachments

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zunlong Jin ◽  
Guoping Li ◽  
Junlei Wang ◽  
Zhien Zhang

Since the energy demand increases, the sources of fluid energy such as wind energy and marine energy have attracted widespread attention, especially vortex-induced vibrations excited by wind energy. It is well known that the lock-in effect in vortex-induced vibration can be applied to the piezoelectric energy harvester. Although numerous researches have been conducted on piezoelectric energy harvesting devices in recent years, a common problem of low bandwidth and harvesting efficiency still exists. In order to increase the response amplitude and decrease the threshold wind speed of vortex-induced vibration, a bionic attachment structure is proposed based on the experimental method. In the present work, twelve models are designed according to the size of pits and hemispheric protrusions which are added to the surface of a flexible smooth cylinder. Compared with the smooth cylinder which is taken as a carrier, the harvester with the bionic structure shows stronger energy capture performance on the whole. As the threshold speed decelerates from 1.8m/s to 1 m/s, the bandwidth, on the contrary, increases from 39.3% to 51.4%. Particularly, for the 10 mm pits structure with 5 columns, its peak voltage can reach 47 V, and its peak power can reach 1.21 mW with a resistance of 800 kΩ, 0.57 mW higher than that of the smooth cylinder. Comparatively speaking, the hemispherical projections structure figures with a much more different energy capturing characteristic. Starting from the column, the measured voltage of the hemispherical bionic harvester is much smaller than that of the smooth cylinder, with a peak voltage less than 15 V and a reducing bandwidth. However, compared with the smooth cylinder, hemispheric projections with 3 columns have a better energy capture effect with a measured voltage of 35V, a resistance of 800kΩ, and a wind speed of 3.097 m/s. Besides, its output power also enhances from 0.48 to 0.56 mW.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 119-127
Author(s):  
Junlei Wang ◽  
Guoping Li ◽  
Zunlong Jin ◽  
Guobiao Hu ◽  
Kun Zhang ◽  
...  

Harvesting energy from wind to supply low-power consumption devices has attracted numerous research interests in recent years. However, a traditional vortex-induced vibration energy harvester can only operate within a limited range of wind speed. Thus, how to broaden the effective wind speed range for energy harvesting is a challenging issue. In this paper, a slotted cylinder bluff body is proposed for being used in the design of a wind energy harvester. The physical prototype is manufactured and the wind tunnel test is performed for evaluating the actual performance of the prototyped energy harvester. The effect of the orientation of the slot on the performance of the proposed energy harvester is experimentally investigated. As compared to the traditional counterpart without the slot at the lateral side of the bluff body, the proposed energy harvester demonstrates the superiority for realizing broadband energy harvesting. Due to the introduction of the slot, and by carefully tuning the orientation of the slot, both the vortex-induced vibration and the galloping phenomena can be stimulated within two neighboring wind speed ranges, leading to the formation of an extremely broad bandwidth for energy harvesting.


2016 ◽  
Vol 28 (5) ◽  
pp. 653-662 ◽  
Author(s):  
Fengxian Bai ◽  
Guoliang Song ◽  
Weijie Dong ◽  
Lijuan Guan ◽  
Huayu Bao

A fan-structure piezoelectric energy harvester was proposed and tested in order to collect wind energy. Polyvinylidene fluoride was chosen due to its flexibility and longevity when compared to lead zirconate titanate. The impact-induced piezoelectric energy harvester consists of a stator and a rotor and a circular array of four cantilevers, utilize the rotor blades’ periodic impact on the free end of the cantilevers to generate oscillatory motion of cantilevers. A circular array of polyvinylidene fluoride cantilevers was fixed around the rotor in order to increase output power, save space at the same time. Static and transient characteristics of different cantilevers were investigated using finite element method and the result showed that polyvinylidene fluoride triangular cantilever performs the best in output voltage and power. Under the condition of optimal impedance and optimal overlap distance, a sum AC output power of four cantilevers without connection to each other approach to 0.75 mW was measured at the wind speed of 7 m/s when the blade number of rotor is 7 or 9. Two branches 0.27 mW DC output power was obtained when each two cantilevers in parallel connection in the case of full-wave rectification of each cantilever at the wind speed of 7 m/s.


2014 ◽  
Vol 613 ◽  
pp. 185-192 ◽  
Author(s):  
Li Juan Guan ◽  
Feng Xian Bai ◽  
Wei Jie Dong

With an increasing concern about renewable resource, piezoelectricity has gained significant importance in research for extracting renewable resource from the environment. In this work, a piezoelectric energy harvester is developed, which composed of polyvinylidene fluoride (PVDF) and a fan structure, to generate electric power from wind energy. The voltage/power responses were evaluated when subjected to various wind speeds. Three laminated piezoelectric PVDF specimens were tested in this study. A series of experiments demonstrated a peak voltage 21.6v and a maximum power density 5.64mw/cm3 is generated respectively when the wind speed is 9m/s.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3101
Author(s):  
Xiaobiao Shan ◽  
Haigang Tian ◽  
Han Cao ◽  
Tao Xie

This paper proposes a novel and efficient energy harvester (EH) system, for capturing simultaneously flutter and vortex-induced vibration. There exists a coupling effect between flexible spring energy harvester (FSEH) and cantilever beam energy harvester (CBEH) in aerodynamic response and output characteristic. Many prototypes of the harvester were manufactured to explore the coupling effect in a wind tunnel. The experimental results demonstrate that FSEH is mainly subjected to flutter-induced vibration and CBEH undergoes vortex-induced vibration. Disturbance of FSEH first takes place, a limited oscillation cycle then occurs, and chaos ultimately happens as airflow velocity increase. Root mean square voltages are more than 11 V for FSEH at beyond 10.52 m/s, which shows the better output performance over the existing harvesters. Vibration response and output voltage of various harvesters are mutually enhanced with each other. An enhancing ratio for FSEH-130-25 is up to 69.6% over FSEH-130-0, while the enhancing ratio for CBEH-130-30 is 198.3% compared to CBEH-0-30. Field application testing manifests that discharging time to power the pedometer is almost twice as long as the charging one for FSEH-130-25 at 14.48 m/s. The current research offers a suggestive guidance for promoting future practical application in micro airfoil aircrafts.


2017 ◽  
Vol 262 ◽  
pp. 123-129 ◽  
Author(s):  
Jiantao Zhang ◽  
Zhou Fang ◽  
Chang Shu ◽  
Jia Zhang ◽  
Quan Zhang ◽  
...  

Author(s):  
Farshad Moradi Gharghani ◽  
Mohamad Ali Bijarchi ◽  
Omid Mohammadi ◽  
Mohammad Behshad Shafii

Abstract Renewable energies could be a good solution to the problems associated with fossil fuels. The storage of wind energy by means of small-scale devices rather than large-scale turbines is a topic that has gained lots of interest. In this study, a compact device is proposed to harvest wind energy and transform it into electrical energy, by means of oscillations of a magnet into a coil, using the concept of vortex-induced vibration (VIV) behind a barrier. For a more comprehensive investigation, this system is studied from two viewpoints of fluid mechanics (without magnet) and power generation (with the magnet). For this purpose, an oscillating plate hinging on one side and three barriers with different geometrical shapes including cylindrical, triangular and rectangular barriers are used. In addition to the effect of barrier geometry, the impacts of various barriers dimensions, the distance between the plate and the barriers as well as inclination angle of the plate with respect to the horizon on the amplitude of oscillations and generated power are investigated. Results showed that in each case, there is a unique Reynolds number in which the frequency of vortex shedding equals to the frequency of plate oscillation and the output power from the energy harvester device is maximum. Besides, by increasing the barrier dimensions, the amplitude of oscillations increases up to three times, which leads to a higher generated power. Finally, by considering the studied parameters, the best conditions for generating energy using the VIV method are presented for design purposes. Among all the considered cases, the cylindrical barrier with the highest diameter and nearest distance to the plate led to the highest efficiency (0.21%) in comparison with other barriers.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4619 ◽  
Author(s):  
Kaiyuan Zhao ◽  
Qichang Zhang ◽  
Wei Wang

A square cylinder with a V-shaped groove on the windward side in the piezoelectric cantilever flow-induced vibration energy harvester (FIVEH) is presented to improve the output power of the energy harvester and reduce the critical velocity of the system, aiming at the self-powered supply of low energy consumption devices in the natural environment with low wind speed. Seven groups of galloping piezoelectric energy harvesters (GPEHs) were designed and tested in a wind tunnel by gradually changing the angle of two symmetrical sharp angles of the V-groove. The GPEH with a sharp angle of 45° was selected as the optimal energy harvester. Its output power was 61% more than the GPEH without the V-shaped groove. The more accurate mathematical model was made by using the sparse identification method to calculate the empirical parameters of fluid based on the experimental data and the theoretical model. The critical velocity of the galloping system was calculated by analyzing the local Hopf bifurcation of the model. The minimum critical velocity was 2.53 m/s smaller than the maximum critical velocity at 4.69 m/s. These results make the GPEH with a V-shaped groove (GPEH-V) more suitable to harvest wind energy efficiently in a low wind speed environment.


Author(s):  
Xia Li ◽  
Zhiyuan Li ◽  
Benxue Liu ◽  
Jun Zhang ◽  
Weidong Zhu

To widen the operation wind speed bandwidth of a classic vortex shedding induced vibration piezoelectric energy harvester, a piezoelectric-electromagnetic hybrid energy harvester based on vortex shedding induced vibration is designed. The hybrid vortex shedding induced vibration energy harvester (HVSIVEH) includes a vortex shedding induced vibration piezoelectric energy harvester (VSIVPEH) and an electromagnetic vibration energy harvester (EVEH). The electromechanical coupled vibration model of the hybrid structure was established. By comparing the variations of the output power as a function of the wind speed of the HVSIVEH and the classic VSIVPEH, it is found that the power response curve of the HVSIVEH has two peaks. The hybrid structure can broaden the working wind speed range. The lower the requirement on the output power level, the more obvious the effect of widening the wind speed range. By the solution and analysis of the electromechanical coupled model, better values of related parameters of the HVSIVEH are obtained. The first and second peaks of the output power of the HVSIVEH show better values of 1.9 and 2.2 mW, respectively, under these parameters.


Sign in / Sign up

Export Citation Format

Share Document