scholarly journals Optimization on Size of Halbach Array Permanent Magnets for Magnetic Levitation System for Permanent Magnet Maglev Train

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 44989-45000
Author(s):  
Yang Jiang ◽  
Yongfang Deng ◽  
Penghua Zhu ◽  
Munan Yang ◽  
Fazhu Zhou
2013 ◽  
Vol 721 ◽  
pp. 278-281
Author(s):  
Jun Ma

t has been investigated that the interaction force in hybrid magnetic levitation systems with two GdBCO bulk superconductors and two permanent magnets system and a cubic permanent magnet (PM2) and a cubic permanent magnet (PM3) system in their coaxial configuration at liquid nitrogen temperature. The two single-domain GdBCO samples are of φ20mm and 10mm in thickness, the permanent magnet PM1 is of rectangular parallelepiped shape, the permanent magnets PM2 and PM3 are of cubic shape; the system placed on the middle of system and their coaxial configuration; It is found that the maximum levitation force decreases from 40.6N to 17.8N while the distance (Dpp) between the permanent magnets is increased from 0mm to 24mm and the distance (Dsp) between the two GdBCO bulk superconductors and a cubic permanent magnet PM3 is 0mm, The results indicate that the higher levitation force can be obtained by introducing PM-PM levitation system based on scientific and reasonable design of the hybrid magnetic levitation system, which is helpful for designing and constructing superconducting magnetic levitation systems.


2013 ◽  
Vol 750-752 ◽  
pp. 987-990
Author(s):  
Jun Ma

It has been investigated that the interaction force in hybrid magnetic levitation systems with a GdBCO bulk superconductor and a permanent magnet system and two permanent magnets (PM2) and two cubic permanent magnets (PM3) system in their coaxial configuration at liquid nitrogen temperature. A single-domain GdBCO sample is of 20mm and 10mm in thickness, the permanent magnet PM1 is of rectangular parallelepiped shape, the permanent magnets PM2 and PM3 are of cubic shape; the system placed on the middle of system and their coaxial configuration; It is found that the maximum levitation force decreases from 46.3N to 16.3N while the horizontal distance (Dpp) between the rectangle permanent magnet and two cubic permanent magnets (PM2) is increased from 0mm to 24mm and the horizontal distance (Dsp) between a GdBCO bulk superconductor and two cubic permanent magnets (PM3) is 0mm, The results indicate that the higher levitation force can be obtained by introducing PM-PM levitation system based on scientific and reasonable design of the hybrid magnetic levitation system, which is helpful for designing and constructing superconducting magnetic levitation systems.


1991 ◽  
Vol 113 (3) ◽  
pp. 472-478 ◽  
Author(s):  
K. Nagaya ◽  
N. Arai

This paper proposes an actuator in the magnetic levitation system using a permanent magnet and an electromagnet. In this system, the gravity force of the masses is supported by a strong permanent magnet in which two identical poles face each other. The vibration due to external disturbances is controlled by use of the electromagnet by changing magnetic fluxes of one of the permanent magnets. The analytical expressions for obtaining the levitation force, spring constant, and the control force versus the electric current in the electromagnet were derived using the equation of the electromagnetic theory. Numerical simulations under the control using the optimal regulator for the magnetically levitated body were carried out. To verify the present theoretical results, experimental results were also obtained.


ICCAS 2010 ◽  
2010 ◽  
Author(s):  
Jeong-Min Jo ◽  
Young-Jae Han ◽  
Chang-Young Lee ◽  
Bu-Byung Kang ◽  
Kyung-Min Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document