scholarly journals Virtual Subspace-based DTC Strategy For Torque Ripple Minimization in Six-phase Induction Motors

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mohammad Hosein Holakooie ◽  
Grzegorz Iwanski

In these days, developments in the area of Induction Motor control is increasing significantly. Considerable advancements have been taken place in the area of Direct Torque Control (DTC), which is capable of providing quick dynamic response with respect to torque and flux. This paper presents a detailed survey on various latest techniques of DTC control of Induction Motor such as DTC-SVM with hysteresis band, DTCSVM with Model Predictive Control, DTC with sliding mode control, DTC with Model reference adaptive system (MRAS) et cetera. The simulation results are discussed for DTC-SVPWM topology and results obtained proves that this method has reduced torque ripple


2011 ◽  
Vol 11 (2) ◽  
pp. 148-155 ◽  
Author(s):  
Auzani Jidin ◽  
Nik Rumzi Nik Idris ◽  
Abdul Halim Mohd Yatim ◽  
Tole Sutikno ◽  
Malik E. Elbuluk

Author(s):  
Amir Darjazini ◽  
Abolfazl Vahedi ◽  
Amin Nobahari ◽  
Saber Gharehseyed

Purpose Pulsating torques cause a number of problems in electrical machines, including mechanical vibrations, acoustic noise and the depreciation of mechanical equipment. In induction motors, the slot skewing method is an effective way to solve these issues; however, it has some drawbacks such as output torque drop, stray loss intensification due to inter-bar currents and iron loss increment. Besides, slot skewing may not be practical in higher-rated induction motors. In this regard, this paper introduces a modified non-skewed rotor (MNSR) structure as a possible alternative to the skewed designs. Design/methodology/approach The proposed structure includes a two-segmented rotor with an intermediate ring between the rotor parts that are mounted on the shaft with a relative shift angle. Detailed information about the idea and structure of the MNSR as well as its manufacturing aspects will be presented in the second section of the paper. First, the working principle of the proposed design is described via analytical equations to provide an insight into the concept. The shifting angle will then be calculated by analyzing the harmonic contents of the electromagnetic torque. Finally, the validity of the analytical method will be verified by developing three-dimensional finite element models. Findings It is demonstrated that by using the proposed rotor structure, the torque ripple has been reduced to a satisfactory level without significantly affecting the mean torque, unlike the skewing method. Furthermore, the new method could avoid the disadvantages of the skewing method while enhancing other motor characteristics such as iron loss. Also, the total volume of the MNSR is equal to the initial design, and the mass and material differences are also negligible. Originality/value In this paper, a MNSR is introduced as a possible alternative to the skewed patterns. The study mainly focused on electromagnetic torque profile characteristics, i.e. the mean torque enhancement and the ripple reduction. The MNSR structure can be used for general purposes and high-performance applications, especially where excellent torque characteristics are required.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 590
Author(s):  
Qiang Guo ◽  
Zhiping Dong ◽  
Heping Liu ◽  
Xiaoyao You

This paper proposes a scheme that can compensate for the nonlinear characteristics of voltage source inverters (VSIs) for low-voltage delta-connected induction motors (IMs). Due to the nonlinearity introduced by the dead-time, the on/off delay, and the voltage drop across the power device, the output voltage of VSIs is seriously distorted, causing distortion in the phase current of the IM, which will lead to output torque ripple. However, the existing compensation methods for three-phase VSIs are derived from star-connected loads, or ignore the conducting properties of power devices. Moreover, the current polarity detection near the current zero is quite complex. In this paper, by taking such nonlinear characteristics into consideration, especially the conducting property of metal-oxide-semiconductor field effect transistors (MOSFETs), an output voltage model of VSIs for low-voltage delta-connected induction motors is presented. After that, in view of the difficulty in detecting the line current polarity near the current zero which might lead to the wrong compensation, an advancing current crossing zero (ACCZ) compensation is proposed. Subsequently, a compensation scheme which combines the compensation based on the VSI output voltage model and ACCZ compensation is proposed. Finally, the proposed compensation scheme is implemented based on a digital signal processor (DSP) drive system. The experimental results show that the proposed scheme has better performance than the common method in terms of suppressing the effect of the nonlinear characteristics of VSI, which demonstrates that the proposed compensation scheme is feasible and effective for the compensation of the nonlinear characteristics of VSI for low-voltage delta-connected IMs.


Sign in / Sign up

Export Citation Format

Share Document