Current Loop Control Strategy of PMSM Based on Fractional Order PID Control Technology

Author(s):  
Chaozhi He ◽  
Hejin Xiong ◽  
Zhangyou Shen
2018 ◽  
Vol 57 (4) ◽  
pp. 3985-3993 ◽  
Author(s):  
Ahmed Mohamed Abdel-Hafez Shata ◽  
Ragi A. Hamdy ◽  
Ayman Samy Abdelkhalik ◽  
Ibrahim El-Arabawy

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Afef Badis ◽  
Mohamed Nejib Mansouri ◽  
Mohamed Habib Boujmil

Cascade control is one of the most efficient systems for improving the performance of the conventional single-loop control, especially in the case of disturbances. Usually, controller parameters in the inner and the outer loops are identified in a strict sequence. This paper presents a novel cascade control strategy for grid-connected photovoltaic (PV) systems based on fractional-order PID (FOPID). Here, simultaneous tuning of the inner and the outer loop controllers is proposed. Teaching-learning-based optimization (TLBO) algorithm is employed to optimize the parameters of the FOPID controller. The superiority of the proposed TLBO-based FOPID controller has been demonstrated by comparing the results with recently published optimization techniques such as genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO). Simulations are conducted using MATLAB/Simulink software under different operating conditions for the purpose of verifying the effectiveness of the proposed control strategy. Results show that the performance of the proposed approach provides better dynamic responses and it outperforms the other control techniques.


2021 ◽  
pp. 107754632110531
Author(s):  
Abbas-Ali Zamani ◽  
Sadegh Etedali

The application of the fractional-order PID (FOPID) controller is recently becoming a topic of research interest for vibration control of structures. Some researchers have successfully implemented the FOPID controller in a single-input single-output (SISO) control structural system subjected to earthquake excitations. However, there is a lack of research that focuses on its application in multi-input multi-output (MIMO) control systems to implement it in seismic-excited structures. In this case, the cross-coupling of the process channels in the MIMO control structural system may result in a complex design process of controllers so that each loop is independently designed. From an operational point of view, the time delay and saturation limit of the actuators are other challenges that significantly affect the performance and robustness of the controller so that ignoring them in the design process may lead to unrealistic results. According to the challenges, the present study proposed an optimal fractional-order PID control design approach for structural control systems subjected to earthquake excitation. Gases Brownian motion optimization (GBMO) algorithm is utilized for optimal tuning of the controller parameters. Considering six real earthquakes and seven performance indices, the performance of the proposed controller, implemented on a ten-story building equipped with an active tendon system (ATS), is compared with those provided by the classical PID controller. Simulation results indicate that the proposed FOPID controller is more efficient than the PID in both terms of seismic performance and robustness against time-delay effects. The proposed FOPID controller can maintain suitable seismic performance in small time delays, while a significant performance loss is observed for the PID controller.


Sign in / Sign up

Export Citation Format

Share Document