Optimal fractional-order PID control design for time-delayed multi-input multi-output seismic-excited structural system

2021 ◽  
pp. 107754632110531
Author(s):  
Abbas-Ali Zamani ◽  
Sadegh Etedali

The application of the fractional-order PID (FOPID) controller is recently becoming a topic of research interest for vibration control of structures. Some researchers have successfully implemented the FOPID controller in a single-input single-output (SISO) control structural system subjected to earthquake excitations. However, there is a lack of research that focuses on its application in multi-input multi-output (MIMO) control systems to implement it in seismic-excited structures. In this case, the cross-coupling of the process channels in the MIMO control structural system may result in a complex design process of controllers so that each loop is independently designed. From an operational point of view, the time delay and saturation limit of the actuators are other challenges that significantly affect the performance and robustness of the controller so that ignoring them in the design process may lead to unrealistic results. According to the challenges, the present study proposed an optimal fractional-order PID control design approach for structural control systems subjected to earthquake excitation. Gases Brownian motion optimization (GBMO) algorithm is utilized for optimal tuning of the controller parameters. Considering six real earthquakes and seven performance indices, the performance of the proposed controller, implemented on a ten-story building equipped with an active tendon system (ATS), is compared with those provided by the classical PID controller. Simulation results indicate that the proposed FOPID controller is more efficient than the PID in both terms of seismic performance and robustness against time-delay effects. The proposed FOPID controller can maintain suitable seismic performance in small time delays, while a significant performance loss is observed for the PID controller.

Author(s):  
Magdi M. El-Saadawi ◽  
Eid Abdelbaqi Gouda ◽  
Mostafa A. Elhosseini ◽  
Mohamed Said Essa

This paper uses Fractional-order PID control (FOPID) to control the speed of the DC motor.  FOPID is more flexible and confident in controlling control higher-order systems compared to classical PID. In this work, the FOPID controller tuning is carried out using different methods ranging from classical techniques to most recent heuristic methods are Fractional Grey wolf Optimization and Nelder-Mead. Moreover, parameter estimation of real-world DC motor is carried out experimentally using Matlab/Simulink interfaced to an Arduino Uno board. The feasibility of FOPID is demonstrated through applications to well-known DC motor case study and the estimated DC motor. Based on ISE, ITE, and ISTE performance measures, the proposed approach provide less settling time, rise time and comparable overshoot compared with existing literature approaches. A robustness assessment with differences in the DC motor components is performed. Simulation finding provide validation of the suggested work and the FOPID controller effectiveness as compared to classical PID controller in terms of robustness and control effect.


2020 ◽  
Vol 5 (1) ◽  
pp. 18-24
Author(s):  
Marwa BOUDANA ◽  
Samir LADACI ◽  
Jean Jacques LOISEAU

In this paper, we consider a class of fractional order time-delay systems and propose a fractional order control design for their stabilization. The controller parameter’s adjustment is achieved in two steps: first, the relay approach is used to compute satisfactory classical PID coefficients, namely kp, Ti and Td. Then, the fractional orders ʎ and µ are optimized using performance criteria. Simulation results show the efficiency of the proposed design technique and its ability to enhance the PID control performance.


Author(s):  
Somayeh Nouruzi Ghazbi ◽  
Alireza Akbarzadeh

<p>This paper presents a gain-tuning scheme for Fractional order PID control systems using the Taguchi method. A prismatic series elastic actuator is selected as an experimental set-up. An optimal controller gains has been obtained through a series of experiments suggested by the Taguchi method. Four stages of tuning are performed in order to accurately tune the controller gains. It is shown that when performance of the proposed controller is compared with two additional controllers: a traditional FOPID tuned with Ziegler-Nichols (Z-N) method and a PID tunned with genetic algorithm, a 94% and 84% improvements in position error is observed, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document