Design and experimental characterization of a low-cost, real-time, wireless AC monitoring system based on ATmega 328P-PU microcontroller

Author(s):  
M. Caruso ◽  
A. O. Di Tommaso ◽  
R. Miceli ◽  
G. Ricco Galluzzo ◽  
P. Romano ◽  
...  
2019 ◽  
Author(s):  
Jeba Anandh S ◽  
Anandharaj M ◽  
Aswinrajan J ◽  
Karankumar G ◽  
Karthik P

2020 ◽  
Vol 17 (3) ◽  
pp. 867-890
Author(s):  
Jun-Hee Choi ◽  
Hyun-Sug Cho

The gravimetric method, which is mainly used among particulate matter (PM) measurement methods, includes the disadvantages that it cannot measure PM in real time and it requires expensive equipment. To overcome these disadvantages, we have developed a light scattering type PM sensor that can be manufactured at low cost and can measure PM in real time. We have built a big data system that can systematically store and analyze the data collected through the developed sensor, as well as an environment where PM states can be monitored mobile in real time using such data. In addition, additional studies were conducted to analyze and correct the collected big data to overcome the problem of low accuracy, which is a disadvantage of the light scattering type PM sensor. We used a linear correction method and proceeded to adopt the most suitable value based on error and accuracy.


Author(s):  
L.P.S.S.K. Dayananda ◽  
A. Narmilan ◽  
P. Pirapuraj

Background: Weather monitoring is an important aspect of crop cultivation for reducing economic loss while increasing productivity. Weather is the combination of current meteorological components, such as temperature, wind direction and speed, amount and kind of precipitation, sunshine hours and so on. The weather defines a time span ranging from a few hours to several days. The periodic or continuous surveillance or the analysis of the status of the atmosphere and the climate, including parameters such as temperature, moisture, wind velocity and barometric pressure, is known as weather monitoring. Because of the increased usage of the internet, weather monitoring has been upgraded to smart weather monitoring. The Internet of Things (IoT) is one of the new technology that can help with many precision farming operations. Smart weather monitoring is one of the precision agriculture technologies that use sensors to monitor correct weather. The main objective of the research is to design a smart weather monitoring and real-time alert system to overcome the issue of monitoring weather conditions in agricultural farms in order for farmers to make better decisions. Methods: Different sensors were used in this study to detect temperature and humidity, pressure, rain, light intensity, CO2 level, wind speed and direction in an agricultural farm and real time clock sensor was used to measured real time weather data. The major component of this system was an Arduino Uno microcontroller and the system ran according to a program written in the Arduino Uno software. Result: This is a low-cost smart weather monitoring system. This system’s output unit were a liquid crystal display and a GSM900A module. The weather data was displayed on a liquid crystal display and the GSM900A module was used to send the data to a mobile phone. This smart weather station was used to monitor real-time weather conditions while sending weather information to the farmer’s mobile phone, allowing him to make better decisions to increase yield.


2014 ◽  
Vol 56 (6) ◽  
pp. 1331-1333 ◽  
Author(s):  
Clarissa de L. Nóbrega ◽  
Marcelo R. da Silva ◽  
Paulo H. da F. Silva ◽  
Adaildo. G. D'Assunção

2013 ◽  
Vol 313-314 ◽  
pp. 1180-1183
Author(s):  
Qi Zhi Fang ◽  
Yong Zhe Ge ◽  
Hong Yu Xu

The elevator monitoring system of elevator is an integrated elevator management platform that can realize fault for alarm, rescuing trapped persons, daily management, quality evaluation and preventing hidden trouble by using C8051f060 MCU as the control core to sensor and collect the elevator operation data, with built-in TCP/IP transport protocol and with HuaWei GTM900C GPRS module to realize all kinds of data monitoring of the elevator, and the transmitting of the data to processing server through the network . This paper mainly introduces the formation of wireless monitoring network system and communication protocol construction, and especially analyzes the function and the system architecture of the wireless communication terminal in real-time monitoring. GPRS can not only satisfy the requirement of real-time elevator monitoring system, with low cost and high reliability but can also effectively avoid a variety of problems that are caused by transmitting the alarm data through cables . This system provides many valuable experiences for the development of unattended system, and it has a broad development prospects.


2020 ◽  
Vol 7 (1) ◽  
pp. 16
Author(s):  
Nuzhat Ahmed ◽  
Yong Zhu

Atrial fibrillation, often called AF is considered to be the most common type of cardiac arrhythmia, which is a major healthcare challenge. Early detection of AF and the appropriate treatment is crucial if the symptoms seem to be consistent and persistent. This research work focused on the development of a heart monitoring system which could be considered as a feasible solution in early detection of potential AF in real time. The objective was to bridge the gap in the market for a low-cost, at home use, noninvasive heart health monitoring system specifically designed to periodically monitor heart health in subjects with AF disorder concerns. The main characteristic of AF disorder is the considerably higher heartbeat and the varying period between observed R waves in electrocardiogram (ECG) signals. This proposed research was conducted to develop a low cost and easy to use device that measures and analyzes the heartbeat variations, varying time period between successive R peaks of the ECG signal and compares the result with the normal heart rate and RR intervals. Upon exceeding the threshold values, this device creates an alert to notify about the possible AF detection. The prototype for this research consisted of a Bitalino ECG sensor and electrodes, an Arduino microcontroller, and a simple circuit. The data was acquired and analyzed using the Arduino software in real time. The prototype was used to analyze healthy ECG data and using the MIT-BIH database the real AF patient data was analyzed, and reasonable threshold values were found, which yielded a reasonable success rate of AF detection.


Sign in / Sign up

Export Citation Format

Share Document