Design of ultra wideband conformal antenna array on a concave surface for medical imaging applications

Author(s):  
Harikiran Muniganti ◽  
K J Vinoy
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Renan Alves dos Santos ◽  
Gabriel Lobão da Silva Fré ◽  
Luís Gustavo da Silva ◽  
Marcelo Carneiro de Paiva ◽  
Danilo Henrique Spadoti

This paper presents a high-directivity ultra-wideband beamsteering antenna array. An innovative beamsteering system based on hemispherical dielectric lenses fed by a set of different printed antennas is proposed. Diversity of signals in different spatial positions can be radiated at the same time. A prototype was manufactured and characterized, operating in a bandwidth varying from 8 GHz to 12 GHz with gain up to 13 dBi.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2014 ◽  
Vol 685 ◽  
pp. 324-327
Author(s):  
Shuang Zhao ◽  
Yu Bo Yue

The mathematical model of conformal antenna array is the premise and basis of the conformal array antenna signal processing. Based on the analysis of the antenna array, a design method for adjusting the direction of the conformal array antenna is proposed. Through simulation, the pattern of antenna meets the actual needs of the project and it reaches pre design requirements.


2012 ◽  
Vol 25 ◽  
pp. 67-79 ◽  
Author(s):  
Baskaran Kasi ◽  
Chandan Kumar Chakrabarty

Author(s):  
Mohamed A. Elmansouri ◽  
James B. Bargeron ◽  
Dejan S. Filipovic
Keyword(s):  

2021 ◽  
Vol 36 (6) ◽  
pp. 788-795
Author(s):  
Dalia Elsheakh ◽  
Osama Dardeer

This article presents a 2×1 CPW ultra wideband rectangular slot antenna array (UWB-RSAA) with a modified circular slot shape to support a high data rate for wireless communications applications. The proposed antenna array dimensions are 0.7λ×0.8λo×0.064λo at the resonant frequency 1.8 GHz. It is fabricated on Rogers RO4003 substrate and fed by using a coplanar waveguide (CPW). A graphene layer is added on one side of the substrate to realize frequency reconfigurability and improve the array gain. The proposed array acquires -10 dB impedance bandwidth of the RSAA that extends from 1.7 GHz to 2.6 GHz, from 3.2 to 3.8 GHz, and from 5.2 GHz to 7 GHz. The proposed array achieved a realized peak gain of 7.5 dBi at 6.5 GHz at 0 Volt bias with an average gain of 4.5 dBi over the operating band. When the graphene bias is increased to 20 Volt, the antenna bandwidth extends from 1 GHz to 4 GHz and from 5 to 7 GHz with a peak gain of 14 dBi at 3.5 GHz and an average gain of 7.5 dBi. The linearly polarized operation of the proposed array over the operating bands makes it suitable for short-range wireless communications .


Sign in / Sign up

Export Citation Format

Share Document