Surface mounted and scanning periodic field eddy-current sensors for structural health monitoring

Author(s):  
N. Goldfine ◽  
D. Schlicker ◽  
Y. Sheiretov ◽  
A. Washabaugh ◽  
V. Zilberstein ◽  
...  
2001 ◽  
Author(s):  
Neil J. Goldfine ◽  
Vladimir A. Zilberstein ◽  
Darrell E. Schlicker ◽  
Yanko Sheiretov ◽  
Karen Walrath ◽  
...  

Author(s):  
Alexi Rakow ◽  
Fu-Kuo Chang

In this study a structural health monitoring (SHM) fastener, with built-in eddy current sensors for in-situ monitoring of fatigue cracks at hole locations in layered metallic joints was developed. This presents an optimal method of sensor integration for early stage detection of these cracks, which are among of the most common forms of damage in airframes. Thin, conformable eddy current sensors optimized for in-hole flaw detection [1] and a method of mechanical integration and complete data acquisition and software system are discussed. Results from fatigue tests of single layer and multi-layer specimens are presented in addition to results from bench-top flaw detection tests as a means of experimental validation of the system.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6843
Author(s):  
Hu Sun ◽  
Tao Wang ◽  
Dawei Lin ◽  
Yishou Wang ◽  
Xinlin Qing

Bolted joints are the primary structures for the load transfer of large-scale structures. It is vital to monitor the process of bolt cracking for enduring structural safety. In this paper, a structural health monitoring technique based on the embedding eddy current sensing film has been proposed to quantify the crack parameters of bolt cracking. Two configurations of the sensing film containing one-dimensional circumferential coil array and two-dimensional coil array are designed and verified to have the ability to identify three crack parameters: the crack angle, the crack depth, and the crack location in the axial direction of the bolt. The finite element method has been employed not only to verify the capacity of the sensing film, but also to investigate the interaction between the crack and the eddy current/magnetic field. It has been demonstrated that as the crack propagates, the variations of the induced voltage of the sensing coils are influenced by both eddy current effect and magnetic flux leakage, which play different roles in the different periods of the crack propagation. Experiments have been performed to verify the effectiveness and feasibility of the sensing film to quantify three crack parameters in the process of the bolt cracking.


Author(s):  
Philipp Stoll ◽  
Enrico Gasparin ◽  
Adriaan Spierings ◽  
Konrad Wegener

AbstractLaser powder bed fusion (LPBF) facilitates the integration of external elements like sensors into workpieces during manufacturing. These embedded components enable e.g. part monitoring, thus being a fundamental application of industry 4.0. This study assesses the feasibility of embedding eddy current (EC) sensors for non-destructive testing (NDT) into SLM components aiming at structural health monitoring (SHM). A reliable embedding process for EC sensors is developed, ensuring the survivability of the sensors for the LPBF process and its harsh conditions. The experiments conducted demonstrate the possibility to use the embedded EC sensor to observe and detect a controlled crack growth. The cracks are realized either with direct EDM cutting or on the course of a fatigue test of CT specimens. The data retrieved by the embedded EC sensors are proven to provide a direct information about the severity of a damage and its evolution over time for both approaches. Thus, supporting the validation of such an innovative and promising SHM concept.


2016 ◽  
Vol 17 (1) ◽  
pp. 24-38 ◽  
Author(s):  
Balint Herdovics ◽  
Frederic Cegla

Torsional guided wave inspection is widely used for pipeline inspection. Piezoelectric and magnetostrictive transducers are most commonly used to generate torsional guided waves. These types of transducers require bonding or mechanical contact to the pipe which can result in changes over time which are undesirable for structural health monitoring. This article presents a non-contact Lorentz force–based electromagnetic acoustic transducer for torsional guided wave monitoring of pipelines. First, the excitation mechanism of the transducer is simulated by analyzing the eddy current and the static magnetic field using the finite element method. An electromagnetic acoustic transducer transformer model is presented which describes the eddy current generation transfer function and the ultrasound excitation. Independently simulated eddy current and magnetic fields are used to calculate the Lorentz force that an electromagnetic acoustic transducer array induces on the surface of a 3-in schedule 40 pipe, and an explicit finite element solver is then used to simulate the elastic wave propagation in the pipe. Then, the reception mechanism and the expected received signal levels are discussed. The construction of an experimental transducer is described, and measurement results from the transducer setup are presented. The measured and modeled performance agree well. Finally, a monitoring example is presented where an artificial defect with 3% reflection coefficient is introduced and successfully detected with the designed sensor.


Sign in / Sign up

Export Citation Format

Share Document