Small, light-weight, low-power, low-cost, high performance computing for CubeSats

Author(s):  
John R. Samson
Author(s):  
Chun-Yuan Lin ◽  
Jin Ye ◽  
Che-Lun Hung ◽  
Chung-Hung Wang ◽  
Min Su ◽  
...  

Current high-end graphics processing units (abbreviate to GPUs), such as NVIDIA Tesla, Fermi, Kepler series cards which contain up to thousand cores per-chip, are widely used in the high performance computing fields. These GPU cards (called desktop GPUs) should be installed in personal computers/servers with desktop CPUs; moreover, the cost and power consumption of constructing a high performance computing platform with these desktop CPUs and GPUs are high. NVIDIA releases Tegra K1, called Jetson TK1, which contains 4 ARM Cortex-A15 CPUs and 192 CUDA cores (Kepler GPU) and is an embedded board with low cost, low power consumption and high applicability advantages for embedded applications. NVIDIA Jetson TK1 becomes a new research direction. Hence, in this paper, a bioinformatics platform was constructed based on NVIDIA Jetson TK1. ClustalWtk and MCCtk tools for sequence alignment and compound comparison were designed on this platform, respectively. Moreover, the web and mobile services for these two tools with user friendly interfaces also were provided. The experimental results showed that the cost-performance ratio by NVIDIA Jetson TK1 is higher than that by Intel XEON E5-2650 CPU and NVIDIA Tesla K20m GPU card.


10.29007/8d25 ◽  
2019 ◽  
Author(s):  
J J Hernández-Gómez ◽  
G A Yañez-Casas ◽  
Alejandro M Torres-Lara ◽  
C Couder-Castañeda ◽  
M G Orozco-del-Castillo ◽  
...  

Nowadays, remote sensing data taken from artificial satellites require high space com- munications bandwidths as well as high computational processing burdens due to the vertiginous development and specialisation of on-board payloads specifically designed for remote sensing purposes. Nevertheless, these factors become a severe problem when con- sidering nanosatellites, particularly those based in the CubeSat standard, due to the strong limitations that it imposes in volume, power and mass. Thus, the applications of remote sensing in this class of satellites, widely sought due to their affordable cost and easiness of construction and deployment, are very restricted due to their very limited on-board computer power, notwithstanding their Low Earth Orbits (LEO) which make them ideal for Earth’s remote sensing. In this work we present the feasibility of the integration of an NVIDIA GPU of low mass and power as the on-board computer for 1-3U CubeSats. From the remote sensing point of view, we present nine processing-intensive algorithms very commonly used for the processing of remote sensing data which can be executed on-board on this platform. In this sense, we present the performance of these algorithms on the proposed on-board computer with respect with a typical on-board computer for CubeSats (ARM Cortex-A57 MP Core Processor), showing that they have acceleration factors of average of 14.04× ∼14.72× in average. This study sets the precedent to perform satellite on-board high performance computing so to widen the remote sensing capabilities of CubeSats.


2021 ◽  
Vol 4 (3) ◽  
pp. 40
Author(s):  
Abdul Majeed

During the ongoing pandemic of the novel coronavirus disease 2019 (COVID-19), latest technologies such as artificial intelligence (AI), blockchain, learning paradigms (machine, deep, smart, few short, extreme learning, etc.), high-performance computing (HPC), Internet of Medical Things (IoMT), and Industry 4.0 have played a vital role. These technologies helped to contain the disease’s spread by predicting contaminated people/places, as well as forecasting future trends. In this article, we provide insights into the applications of machine learning (ML) and high-performance computing (HPC) in the era of COVID-19. We discuss the person-specific data that are being collected to lower the COVID-19 spread and highlight the remarkable opportunities it provides for knowledge extraction leveraging low-cost ML and HPC techniques. We demonstrate the role of ML and HPC in the context of the COVID-19 era with the successful implementation or proposition in three contexts: (i) ML and HPC use in the data life cycle, (ii) ML and HPC use in analytics on COVID-19 data, and (iii) the general-purpose applications of both techniques in COVID-19’s arena. In addition, we discuss the privacy and security issues and architecture of the prototype system to demonstrate the proposed research. Finally, we discuss the challenges of the available data and highlight the issues that hinder the applicability of ML and HPC solutions on it.


Author(s):  
Rajendra V. Boppana ◽  
Suresh Chalasani ◽  
Bob Badgett ◽  
Jacqueline A. Pugh

In this article, we describe a parallel architecture for MEDLINE database integrated with search refinement tools to facilitate accurate and fast response to search requests by users. The proposed architecture, to be developed by the authors, will use low-cost, high-performance computing clusters consisting of Linux based personal computers and workstations (i) to provide subsecond response times for individual searches and (ii) to support several concurrent queries from search refinement programs such as SUMSearch.


Sign in / Sign up

Export Citation Format

Share Document