Effects of active layer thickness on the electrical characteristics of solution processed In-Ga-Zn-O TFTs

Author(s):  
Yewon Hong ◽  
Hwarim Im ◽  
Jongjang Park ◽  
Yongtaek Hong
2008 ◽  
Vol 52 (3) ◽  
pp. 412-416 ◽  
Author(s):  
L. Mariucci ◽  
D. Simeone ◽  
S. Cipolloni ◽  
L. Maiolo ◽  
A. Pecora ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1295
Author(s):  
Dae-Hwan Kim ◽  
Hyun-Seok Cha ◽  
Hwan-Seok Jeong ◽  
Seong-Hyun Hwang ◽  
Hyuck-In Kwon

Herein, we investigated the effects of active layer thickness (tS) on the electrical characteristics and stability of high-mobility indium–gallium–tin oxide (IGTO) thin-film transistors (TFTs). IGTO TFTs, with tS values of 7 nm, 15 nm, 25 nm, 35 nm, and 50 nm, were prepared for this analysis. The drain current was only slightly modulated by the gate-to-source voltage, in the case of the IGTO TFT with tS = 50 nm. Under positive bias stress (PBS), the electrical stability of the IGTO TFTs with a tS less than 35 nm improved as the tS increased. However, the negative bias illumination stress (NBIS) stability of these IGTO TFTs deteriorated as the tS increased. To explain these phenomena, we compared the O1s spectra of IGTO thin films with different tS values, acquired using X-ray photoelectron spectroscopy. The characterization results revealed that the better PBS stability, and the low NBIS stability, of the IGTO TFTs with thicker active layers were mainly due to a decrease in the number of hydroxyl groups and an increase in the number of oxygen vacancies in the IGTO thin films with an increase in tS, respectively. Among the IGTO TFTs with different tS, the IGTO TFT with a 15-nm thick active layer exhibited the best electrical characteristics with a field-effect mobility (µFE) of 26.5 cm2/V·s, a subthreshold swing (SS) of 0.16 V/dec, and a threshold voltage (VTH) of 0.3 V. Moreover, the device exhibited robust stability under PBS (ΔVTH = 0.9 V) and NBIS (ΔVTH = −1.87 V).


2010 ◽  
Vol 11 (12) ◽  
pp. 1920-1927 ◽  
Author(s):  
L. Reséndiz ◽  
M. Estrada ◽  
A. Cerdeira ◽  
B. Iñiguez ◽  
M.J. Deen

2013 ◽  
Vol 5 (2) ◽  
pp. 305-310 ◽  
Author(s):  
C. Beer ◽  
A. N. Fedorov ◽  
Y. Torgovkin

Abstract. Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. The gridded datasets can be accessed at the PANGAEA repository (doi:10.1594/PANGAEA.808240). Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.


Sign in / Sign up

Export Citation Format

Share Document