Classification of cervical cell nuclei using morphological segmentation and textural feature extraction

Author(s):  
R.F. Walker ◽  
P. Jackway ◽  
B. Lovell ◽  
I.D. Longstaff
2018 ◽  
Vol 8 (9) ◽  
pp. 1608 ◽  
Author(s):  
Khin Win ◽  
Somsak Choomchuay ◽  
Kazuhiko Hamamoto ◽  
Manasanan Raveesunthornkiat

Due to the close resemblance between overlapping and cancerous nuclei, the misinterpretation of overlapping nuclei can affect the final decision of cancer cell detection. Thus, it is essential to detect overlapping nuclei and distinguish them from single ones for subsequent quantitative analyses. This paper presents a method for the automated detection and classification of overlapping nuclei from single nuclei appearing in cytology pleural effusion (CPE) images. The proposed system is comprised of three steps: nuclei candidate extraction, dominant feature extraction, and classification of single and overlapping nuclei. A maximum entropy thresholding method complemented by image enhancement and post-processing was employed for nuclei candidate extraction. For feature extraction, a new combination of 16 geometrical and 10 textural features was extracted from each nucleus region. A double-strategy random forest was performed as an ensemble feature selector to select the most relevant features, and an ensemble classifier to differentiate between overlapping nuclei and single ones using selected features. The proposed method was evaluated on 4000 nuclei from CPE images using various performance metrics. The results were 96.6% sensitivity, 98.7% specificity, 92.7% precision, 94.6% F1 score, 98.4% accuracy, 97.6% G-mean, and 99% area under curve. The computation time required to run the entire algorithm was just 5.17 s. The experiment results demonstrate that the proposed algorithm yields a superior performance to previous studies and other classifiers. The proposed algorithm can serve as a new supportive tool in the automated diagnosis of cancer cells from cytology images.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


2007 ◽  
Vol 21 (2) ◽  
pp. 129-144 ◽  
Author(s):  
Denise Guliato ◽  
Juliano D. de Carvalho ◽  
Rangaraj M. Rangayyan ◽  
Sérgio A. Santiago

Sign in / Sign up

Export Citation Format

Share Document