Compact dual-band bandpass filter based on zeroth-order resonator with large center frequency ratio

Author(s):  
Guangxu Shen ◽  
Wenquan Che
2021 ◽  
Vol 10 (1) ◽  
pp. 232-240
Author(s):  
Mussa Mabrok ◽  
Zahriladha Zakaria ◽  
Yully Erwanti Masrukin ◽  
Tole Sutikno ◽  
Hussein Alsariera

Due to the progression growth of multiservice wireless communication systems in a single device, multiband bandpass filter has attract a great attention to the end user. Therefore, multiband bandpass filter is a crucial component in the multiband transceivers systems which can support multiple services in one device. This paper presents a design of dual-band bandpass filter at 2.4 GHz and 3.5 GHz for WLAN and WiMAX applications. Firstly, the wideband bandpass filter is designed at a center frequency of 3 GHz based on quarter-wavelength short circuited stub. Three types of defected microstrip structure (DMS) are implemented to produce a wide notch band, which are T-inversed shape, C-shape, and U- Shape. Based on the performance comparisons, U-shaped DMS is selected to be integrated with the bandpass filter. The designed filter achieved two passbands centered at 2.51 GHz and 3.59 GHz with 3 dB bandwidth of 15.94 % and 15.86 %. The proposed design is very useful for wireless communication systems and its applications such as WLAN and WiMAX 


2013 ◽  
Vol 655-657 ◽  
pp. 1614-1618
Author(s):  
Wen Ko ◽  
Man Long Her ◽  
Yu Lin Wang ◽  
Ming Wei Hsu

This paper studies a very simple structure for dual-band bandpass filter. Filter is composed of two asymmetric coupled resonator circuit by two sets of different size stepped impedance resonator. This circuit applied microstrip line, coupling principle and impedance ratio by controlling the stepped impedance resonator to control the center frequency 2.6/5.2 GHz of the first and the second bandpass filter. The basic structure of the filter is constituted by the three sections of transmission line and two sets of SIR, that is, in two gaps of the three sections of transmission line parallel connection the equivalent inductances and capacitor of the two sets of SIR in series with the resonant circuit (LCL) to constitute bandpass filter. The low frequency 2.6 GHz is through the upper half of low impedance SIR, and the high frequency 5.2 GHz is through the lower half of high impedance SIR. This paper presents the design of asymmetric SIR-based dual-band bandpass filter, the filter structure is simple, easy to produce and can control the characteristics of the passband center frequency. By electromagnet simulation software( IE3D ) to simulate, the actual production of the circuit using a vector analyzer measurement, simulation and measurement results show good consistency.


2013 ◽  
Vol 321-324 ◽  
pp. 376-382
Author(s):  
Ming Wei Hsu ◽  
Man Long Her ◽  
Wen Ko ◽  
Yu Lin Wang

In this paper, two types of miniaturized dual-mode bandpass filters (BPF), a single-ring (SR) resonator, and a double-ring (DR) resonator are developed. By applying the capacitive-coupling technique to a dual-mode ring filter, a technique is proposed to miniaturize the dual-mode double-ring filter. An adjustable dual-band bandpass filter is achieved by developing a ring resonator where the two modes are capacitively coupled. Control of the filter center frequency is determined by the diameter of the ring and by the rings annular width. Filter coupling amount can also be adjusted by disturbance (perturbation) of an open stub attached to the annular disc. Proposed filters explore both single- and double-ring architectures. A single-ring resonator acting as a dual bandpass filter to allow 3.8 GHz and 7.8 GHz single is developed. A double-ring resonator to allow 2.05 GHz and 3.9 GHz signals is also developed. The ring resonators are fabricated on RO-4003 substrate, with relative dielectric constant of 3.38, thickness of 0.8 mm, and dielectric loss tangent of 0.0025. Results indicate the filters can be applied in the communications field.


2017 ◽  
Vol 7 (4) ◽  
pp. 1786-1790
Author(s):  
M. Abdul-Niby ◽  
M. Farhat ◽  
M. Nahas ◽  
Μ. Μ. Alomari

This paper presents a planar tri-band bandpass filter with high out-of-band rejection over a wide band. The filter is based on two pairs of λ/4 resonators embedded inside an open loop ring resonator without any size increase, where each pair of resonators are electromagnetically coupled to each other and the feedlines. This results in the excitations of passbands, where the first passband is generated by the open loop resonators. The second and the third passbands are excited by λ/4 resonators. The proposed technique provides sufficient degrees of freedom to control the center frequency and bandwidth of the three passbands independently. In addition, the six transmission zeros created around the passbands results in a tri-band filter with high selectivity, sharp 3 dB cut-off frequency, high isolation, low passband insertion-loss and high out-of-band harmonic rejection across an ultra-broadband frequency range up to 17 GHz. The proposed technique has the ability to switch from triple to dual band by removing one pair of the inner resonators. Design methodology and simulation results of the filter are provided.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sheng Zhang ◽  
Chao Ji ◽  
Meng-Han Tong ◽  
Zhen-Jiang Xie ◽  
Cong Xu

Abstract A compact dual-band balanced bandpass filter with high frequency selectivity and adjustable passband based on the perturbed circular substrate integrated waveguide cavity is firstly proposed in this paper. Two pairs of metallic vias are located at 45°direction of cavities to separate a pair of degenerate modes (TM110 modes) to achieve the differential-mode (DM) dual-band response. Moreover, the perturbation vias can also be used to control the center frequency of the second DM passband while the first one still stays unaffected. The introduction of source-load coupling makes the filter exhibit excellent selectivity. And four controllable transmission zeros appear near two DM passbands. Finally, good common-mode suppression has been got owing to the proposed balanced structure. The measured results are in accordance with the simulated ones well.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850100 ◽  
Author(s):  
Amit Bage ◽  
Sushrut Das

This paper presents a planar insert-loaded compact, dual-pole, dual-band, waveguide bandpass filter with adjustable multiple transmission zeros. Two identical inserts are placed on the transverse plane of a standard WR-90 waveguide at 8.41[Formula: see text]mm distance to achieve the filter characteristics. The insert consists of a stub-loaded C-shaped resonator and two asymmetric slot resonators. Two stub-loaded C-shaped resonators have been used to achieve dual-pole, dual-band response whereas the asymmetric slot pairs have been used to introduce transmission zeros. The structure allows independent control of the center frequencies of the passbands and transmission zeros, which is useful to control the rejection level of out-of-band signals without disturbing the center frequency. Measured result shows a dual-pole, dual-band, bandpass response with center frequencies at 8.81[Formula: see text]GHz and 10.9[Formula: see text]GHz, the respective 3[Formula: see text]dB bandwidths of 0.276[Formula: see text]GHz and 0.398[Formula: see text]GHz and transmission zeros at 8.02, 8.5, 9.46, 10.13, 11.53 and 12 GHz.


2015 ◽  
Vol 57 (3) ◽  
pp. 639-642 ◽  
Author(s):  
Ceyhun Karpuz ◽  
Ali Kursad Gorur ◽  
Engin Sahin

Sign in / Sign up

Export Citation Format

Share Document