A Reconfigurable, Modular and Scalable Impedance Measurement Unit with SiC MOSFET-Based Power Electronics Building Blocks

Author(s):  
Sizhan Zhou ◽  
Bo Wen ◽  
Yu Rong ◽  
Vladimir Mitrovic ◽  
Rolando Burgos ◽  
...  
Author(s):  
He Song ◽  
Jun Wang ◽  
Yue Xu ◽  
Joshua Stewart ◽  
Slavko Mocevic ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2648 ◽  
Author(s):  
Antonio Delle Femine ◽  
Daniele Gallo ◽  
Carmine Landi ◽  
Mario Luiso

The widespread diffusion of Phasor Measurement Units (PMUs) is a becoming a need for the development of the “smartness” of power systems. However, PMU with accuracy compliant to the standard Institute of Electrical and Electronics Engineers (IEEE) C37.118.1-2011 and its amendment IEEE Std C37.118.1a-2014 have typically costs that constitute a brake for their diffusion. Therefore, in this paper, the design of a low-cost implementation of a PMU is presented. The low cost approach is followed in the design of all the building blocks of the PMU. A key feature of the presented approach is that the data acquisition, data processing and data communication are integrated in a single low cost microcontroller. The synchronization is obtained using a simple external Global Positioning System receiver, which does not provide a disciplined clock. The synchronization of sampling frequency, and thus of the measurement, to the Universal Time Coordinated, is obtained by means of a suitable signal processing technique. For this implementation, the Interpolated Discrete Fourier Transform has been used as the synchrophasor estimation algorithm. A thorough metrological characterization of the realized prototype in different test conditions proposed by the standards, using a high performance PMU calibrator, is also shown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuo-Yao Qu ◽  
Meng Dai ◽  
Shuo Wu ◽  
Zhi-Rang Lv ◽  
Xin-Yu Ti ◽  
...  

AbstractChest electrical impedance tomography (EIT) is a promising application which is used to monitor the ventilation and perfusion of the lung at the bedside dynamically. The aim of the study was to introduce the first Chinese made chest EIT device for ICU application (Pulmo EIT-100). The system design of the hardware and software was briefly introduced. The performance of the system was compared to PulmoVista 500 (Dräger Medical) in healthy volunteers. The EIT system Pulmo EIT-100 consists of impedance measurement module, power supply module, PC all-in-one machine, medical cart and accessories. The performance of the system current source and voltage measurement unit was tested. A total of 50 healthy lung volunteers were prospectively examined. Subjects were asked to perform repetitive slow vital capacity (SVC) maneuvers with a spirometer. EIT measurements were performed in the following sequence during each SVC with: (1) Pulmo EIT-100, (2) PulmonVista500, (3) Pulmo EIT-100 and (4) PulmonVista500. Linearity and regional ventilation distribution of the reconstructed images from two devices were compared. The output frequency stability of the current source was 2 ppm. The amplitude error within one hour was less than 0.32‰. The output impedance of the current source was about 50kΩ. The signal-to-noise ratio of each measurement channel was ≥ 60 dB. For fixed resistance measurements, the measured values drifted about 0.08% within one hour. For human subjects, the correlations between the spirometry volume and EIT impedance from two devices were both 0.99 ± 0.01. No statistical significances were found in the parameters investigated. The repeatability (variability) of measures from the same device was comparable. Our EIT device delivers reliable data and might be used for patient measurement in a clinical setting.


Author(s):  
Karl Schoder ◽  
Mischa Steurer ◽  
Ferene Bogdan ◽  
John Hauer ◽  
James Langston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document