Three-Phase Zone Converter for the Adaptive Voltage Regulation of Urban Electric Transport

Author(s):  
Vladlen V. Ivanov ◽  
Sergey V. Myatczh ◽  
Anna V. Kulekina ◽  
Evgeny Y. Abramov
2021 ◽  
Author(s):  
Xinghua Dang ◽  
Shangzhi Pan ◽  
Xicai Pan ◽  
Jinwu Gong ◽  
Xiaolu Ge ◽  
...  

Author(s):  
Subramaniam Umashankar ◽  
Vishnu Kalaiselvan Arun Shankar ◽  
Padmanaban Sanjeevikumar ◽  
K. Harini

2021 ◽  
Vol 1 (1) ◽  
pp. 23-34
Author(s):  
Mansur A. SHAKIROV ◽  

A topological equivalent circuit for a three-phase three-core transformer reflecting the spatial structure of its magnetic system is developed. Owing to this approach, it became possible to represent the magnetic fluxes of the magnetic circuit’s all main sections and the apertures for each of three phases directly in the circuit in the absence of the windings’ neutral wires. The circuit is constructed by stitching together the anatomical circuit models of single-phase transformers obtained in the previous parts with taking into account the relationships between the fluxes at the junctions of the phase zones in iron. Its validity is confirmed by the rigor nature of the physical and mathematical relations for idealized transformers with infinite magnetic permeability of iron and simplified magnetic field patterns, which corresponds to the generally accepted approach with neglecting the magnetization currents. The difference lies in the fact that the developed model takes into account the heterogeneity of magnetization in different parts of the magnetic circuit with allocating more than 30 sections in the iron and apertures. The transition to the model of a real three-core transformer is carried out by adding four nonlinear transverse magnetization branches in each extreme phase zone and eight branches in the central phase zone to the idealized equivalent circuit. It is shown that in cases of winding connections without neutral wires, there is no flux of the Poynting vector in interphase zones in any unbalanced mode. In this case, the problems connected with the occurrence of fluxes exceeding the no-load fluxes under the conditions of symmetric and asymmetric short circuits, as well as the occurrence of buckling fluxes in these modes in the region outside the transformer iron, are solved.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4093 ◽  
Author(s):  
Mora ◽  
Núñez ◽  
Visairo ◽  
Segundo ◽  
Camargo

This paper deals with a battery energy storage system (BESS) in only one of its multiple operating modes, that is when the BESS is charging the battery bank and with the focus on the control scheme design for the BESS input stage, which is a three-phase LCL-filter PWM rectifier. The rectifier's main requirements comprise output voltage regulation, power factor control, and low input current harmonic distortion, even in the presence of input voltage variations. Typically, these objectives are modeled by using a dq model with its corresponding two-loop controller architecture, including an outer voltage loop and a current internal loop. This paper outlines an alternative approach to tackle the problem by using not only an input–output map linearization controller, with the aim of a single-loop current control, but also by avoiding the dq modeling. In this case, the voltage is indirectly controlled by computing the current references based on the converter power balance. The mathematical model of the three-phase LCL-filter PWM rectifier is defined based on the delta connection of the filter, which accomplishes the requirements of a 100 kW BESS module. Extensive simulation results are included to confirm the performance of the proposed closed-loop control in practical applications.


Author(s):  
Suresh Mikkili ◽  
Adinarayana Padamati

Abstract In this research paper, the shunt active filter (SHAF) is used to improve the power quality of electrical network by mitigating the harmonics with the help of different control strategies (p-q control strategy, Id-Iq control strategy, PHC control strategy) for three phase three wire system. It is quite difficult to optimize the performance of power system networks using conventional methods, because of complex nature of the systems that are highly non-linear and non-stationary. Three phase reference current waveforms generated by the proposed schemes are tracked by three phase voltage source converter in a hysteresis band control scheme. The performance of proposed control strategies has been evaluated in terms of harmonic mitigation and DC link voltage regulation under various source voltage conditions. The proposed SHAF with different control strategies is able to eliminate uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/Simulink software are presented to support the feasibility of the proposed control strategy.


Sign in / Sign up

Export Citation Format

Share Document