Design of low-energy transceivers in nanoscale CMOS for Internet of Things (Invited)

Author(s):  
Jiji Zhang ◽  
Fujiang Lin ◽  
Yunzhen Wang ◽  
Shengxi Diao
Author(s):  
Jordan Frith

The phrase the Internet of things was originally coined in a 1999 presentation about attaching radio frequency identification (RFID) tags to individual objects. These tags would make the objects machine-readable, uniquely identifiable, and, most importantly, wirelessly communicative with infrastructure. This chapter evaluates RFID as a piece of mobile communicative infrastructure, and it examines two emerging forms: near-field communication (NFC) and Bluetooth low-energy beacons. The chapter shows how NFC and Bluetooth low-energy beacons may soon move some types of RFID to smartphones, in this way evolving the use of RFID in payment and transportation and enabling new practices of post-purchasing behaviors.


Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 372 ◽  
Author(s):  
Diego Hortelano ◽  
Teresa Olivares ◽  
M. Ruiz ◽  
Celia Garrido-Hidalgo ◽  
Vicente López

Author(s):  
Muhammad Rizwan Ghori ◽  
Tat-Chee Wan

Bluetooth Low Energy (BLE) Mesh Networks enable flexible and reliable communications for low-power Internet of Things (IoT) devices. Most BLE-based mesh protocols are implemented as overlays on top of the standard Bluetooth star topologies while using piconets and scatternets. Nonetheless, mesh topology support has increased the vulnerability of BLE to security threats, since a larger number of devices can participate in a BLE Mesh network. To address these concerns, BLE version 5 enhanced existing BLE security features to deal with various authenticity, integrity, and confidentiality issues. Despite of the BLE version 5 security enhancements, viable IDS solutions for BLE Mesh networks remain a nascent research area.


2019 ◽  
Vol 8 (3) ◽  
pp. 38 ◽  
Author(s):  
Tareq Khan

One of the most common forgotten things of adults is that they go to the shops and completely forget what they went for. The solution to this problem is to carry a shopping list. In this project, a novel Internet of Things (IoT)-connected smart canister system is developed, which automatically senses the item quantity in the canisters using proximity sensor, sends the data to a hub using Bluetooth Low Energy, and then the hub sends a cloud message to the consumer’s smartphone app using the Internet. The hub and the smartphone app display the item quantities and automatically add the items that are about to finish to a digital shopping list. The automatic generation of the shopping list removes the burden of manually checking each item before going to the shops and gives peace of mind to the consumers. A prototype of the proposed system with three canister devices, one hub, and the smartphone app is developed and tested successfully. The canister device consumes ultra-low power and has a battery life of more than a year.


Sign in / Sign up

Export Citation Format

Share Document