scholarly journals Bluetooth Low Energy Mesh Networks

Author(s):  
Muhammad Rizwan Ghori ◽  
Tat-Chee Wan

Bluetooth Low Energy (BLE) Mesh Networks enable flexible and reliable communications for low-power Internet of Things (IoT) devices. Most BLE-based mesh protocols are implemented as overlays on top of the standard Bluetooth star topologies while using piconets and scatternets. Nonetheless, mesh topology support has increased the vulnerability of BLE to security threats, since a larger number of devices can participate in a BLE Mesh network. To address these concerns, BLE version 5 enhanced existing BLE security features to deal with various authenticity, integrity, and confidentiality issues. Despite of the BLE version 5 security enhancements, viable IDS solutions for BLE Mesh networks remain a nascent research area.

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3590 ◽  
Author(s):  
Muhammad Rizwan Ghori ◽  
Tat-Chee Wan ◽  
Gian Chand Sodhy

Bluetooth Low Energy (BLE) Mesh Networks enable flexible and reliable communications for low-power Internet of Things (IoT) devices. Most BLE-based mesh protocols are implemented as overlays on top of the standard Bluetooth star topologies while using piconets and scatternets. Nonetheless, mesh topology support has increased the vulnerability of BLE to security threats, since a larger number of devices can participate in a BLE Mesh network. To address these concerns, BLE version 5 enhanced existing BLE security features to deal with various authenticity, integrity, and confidentiality issues. However, there is still a lack of detailed studies related to these new security features. This survey examines the most recent BLE-based mesh network protocols and related security issues. In the first part, the latest BLE-based mesh communication protocols are discussed. The analysis shows that the implementation of BLE pure mesh protocols remains an open research issue. Moreover, there is a lack of auto-configuration mechanisms in order to support bootstrapping of BLE pure mesh networks. In the second part, recent BLE-related security issues and vulnerabilities are highlighted. Strong Intrusion Detection Systems (IDS) are essential for detecting security breaches in order to protect against zero-day exploits. Nonetheless, viable IDS solutions for BLE Mesh networks remain a nascent research area. Consequently, a comparative survey of IDS approaches for related low-power wireless protocols was used to map out potential approaches for enhancing IDS solutions for BLE Mesh networks.


Author(s):  
Jordan Frith

The phrase the Internet of things was originally coined in a 1999 presentation about attaching radio frequency identification (RFID) tags to individual objects. These tags would make the objects machine-readable, uniquely identifiable, and, most importantly, wirelessly communicative with infrastructure. This chapter evaluates RFID as a piece of mobile communicative infrastructure, and it examines two emerging forms: near-field communication (NFC) and Bluetooth low-energy beacons. The chapter shows how NFC and Bluetooth low-energy beacons may soon move some types of RFID to smartphones, in this way evolving the use of RFID in payment and transportation and enabling new practices of post-purchasing behaviors.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4462 ◽  
Author(s):  
Paolo Baronti ◽  
Paolo Barsocchi ◽  
Stefano Chessa ◽  
Fabio Mavilia ◽  
Filippo Palumbo

Indoor localization has become a mature research area, but further scientific developments are limited due to the lack of open datasets and corresponding frameworks suitable to compare and evaluate specialized localization solutions. Although several competitions provide datasets and environments for comparing different solutions, they hardly consider novel technologies such as Bluetooth Low Energy (BLE), which is gaining more and more importance in indoor localization due to its wide availability in personal and environmental devices and to its low costs and flexibility. This paper contributes to cover this gap by: (i) presenting a new indoor BLE dataset; (ii) reviewing several, meaningful use cases in different application scenarios; and (iii) discussing alternative uses of the dataset in the evaluation of different positioning and navigation applications, namely localization, tracking, occupancy and social interaction.


Author(s):  
Muhammad Fahmi Ali Fikri ◽  
Dany Primanita Kartikasari ◽  
Adhitya Bhawiyuga

Sensor data acquisition is used to obtain sensor data from IoT devices that already provide the required sensor data. To acquire sensor data, we can use Bluetooth Low Energy (BLE) protocol. This data acquisition aims to process further data which will later be sent to the server. Bluetooth Low Energy (BLE) has an architecture consisting of sensors, gateways, and data centers, but with this architecture, there are several weaknesses, namely the failure when sending data to the data center due to not being connected to internet network and data redundancy at the time of data delivery is done. The proposed solution to solve this problem is to create a system that can acquire sensor data using the Bluetooth Low Energy (BLE) protocol with use a store and forward mechanism and checking data redundancy. The proposed system will be implemented using sensors from IoT devices, the gateway used is Android devices, and using the Bluetooth Low Energy protocol to acquire data from sensors. Then the data will be sent to the cloud or server. The results of the test give the results of the system being successfully implemented and IoT devices can be connected to the gateway with a maximum distance of 10 meters. Then when the system stores, for every minute there is an increase in data of 4 kb. Then there is no data redundancy in the system.


Author(s):  
Vasaki Ponnusamy ◽  
Yen Pei Tay ◽  
Lam Hong Lee ◽  
Tang Jung Low ◽  
Cheah Wai Zhao

Internet of Things (IoT) has becoming a central theme in current technology trend whereby objects, people or even animals and plants can exchange information over the Internet. IoT can be referred as a network of interconnected devices such as wearables, sensors and implantables, that has the ability to sense, interact and make collective decisions autonomously. In short, IoT enables a full spectrum of machine-to-machine communications equipped with distributed data collection capabilities and connected through the cloud to facilitate centralized data analysis. Despite its great potential, the reliability of IoT devices is impeded with limited energy supply if these devices were to deploy particularly in energy-scarced locations or where no human intervention is possible. The best possible deployment of IoT technology is directed to cater for unattended situations like structural or environmental health monitoring. This opens up a new research area in IoT energy efficiency domain. A possible alternative to address such energy constraint is to look into re-generating power of IoT devices or more precisely known as energy harvesting or energy scavenging. This chapter presents the review of various energy harvesting mechanisms, current application of energy harvesting in IoT domain and its future design challenges.


Sensors ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 372 ◽  
Author(s):  
Diego Hortelano ◽  
Teresa Olivares ◽  
M. Ruiz ◽  
Celia Garrido-Hidalgo ◽  
Vicente López

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1389 ◽  
Author(s):  
Krishna Prasad Satamraju ◽  
Malarkodi B

The advent of Internet of Things (IoT) brought innovation along with unprecedented benefits of convenience and efficacy in many operations that were otherwise very cumbersome. This innovation explosion has surfaced a new dimension of vulnerability and physical threat to the data integrity of IoT networks. Implementing conventional cryptographic algorithms on IoT devices is not future-proof as these devices are constrained in terms of computational power, performance, and memory. In this paper, we are proposing a novel framework, a unique model that integrates IoT networks with a blockchain to address potential privacy and security threats for data integrity. Smart contracts are instrumental in this integration process and they are used to handle device authentication, authorization and access-control, and data management. We further share a new design model for interfaces to integrate both platforms while highlighting its performance results over the existing models. With the incorporation of off-chain data storage into the framework, overall scalability of the system can be increased. Finally, our research concludes how the proposed framework can be fused virtually into any existing IoT applications with minimal modifications.


Author(s):  
Vasaki Ponnusamy ◽  
Yen Pei Tay ◽  
Lam Hong Lee ◽  
Tang Jung Low ◽  
Cheah Wai Zhao

Internet of Things (IoT) has becoming a central theme in current technology trend whereby objects, people or even animals and plants can exchange information over the Internet. IoT can be referred as a network of interconnected devices such as wearables, sensors and implantables, that has the ability to sense, interact and make collective decisions autonomously. In short, IoT enables a full spectrum of machine-to-machine communications equipped with distributed data collection capabilities and connected through the cloud to facilitate centralized data analysis. Despite its great potential, the reliability of IoT devices is impeded with limited energy supply if these devices were to deploy particularly in energy-scarced locations or where no human intervention is possible. The best possible deployment of IoT technology is directed to cater for unattended situations like structural or environmental health monitoring. This opens up a new research area in IoT energy efficiency domain. A possible alternative to address such energy constraint is to look into re-generating power of IoT devices or more precisely known as energy harvesting or energy scavenging. This chapter presents the review of various energy harvesting mechanisms, current application of energy harvesting in IoT domain and its future design challenges.


Sign in / Sign up

Export Citation Format

Share Document