Transformer hot spot temperature prediction using a hybrid algorithm of support vector regression and information granulation

Author(s):  
Yi Cui ◽  
Hui Ma ◽  
Tapan Saha
Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1320
Author(s):  
Yuanyuan Sun ◽  
Gongde Xu ◽  
Na Li ◽  
Kejun Li ◽  
Yongliang Liang ◽  
...  

Both poor cooling methods and complex heat dissipation lead to prominent asymmetry in transformer temperature distribution. Both the operating life and load capacity of a power transformer are closely related to the winding hotspot temperature. Realizing accurate prediction of the hotspot temperature of transformer windings is the key to effectively preventing thermal faults in transformers, thus ensuring the reliable operation of transformers and accurately predicting transformer operating lifetimes. In this paper, a hot spot temperature prediction method is proposed based on the transformer operating parameters through the particle filter optimization support vector regression model. Based on the monitored transformer temperature, load rate, transformer cooling type, and ambient temperature, the hotspot temperature of a dry-type transformer can be predicted by a support vector regression method. The hyperparameters of the support vector regression are dynamically optimized here according to the particle filter to improve the optimization accuracy. The validity and accuracy of the proposed method are verified by comparing the proposed method with a traditional support vector regression method based on the real operating data of a 35 kV dry-type transformer.


2012 ◽  
Vol 107 ◽  
pp. 1-8 ◽  
Author(s):  
E.G. Ortiz-García ◽  
S. Salcedo-Sanz ◽  
C. Casanova-Mateo ◽  
A. Paniagua-Tineo ◽  
J.A. Portilla-Figueras

2021 ◽  
pp. 264-264
Author(s):  
Fating Yuan ◽  
Wentao Yang ◽  
Bo Tang ◽  
Yue Wang ◽  
Fa Jiang ◽  
...  

In this paper, the CFD (computational fluid dynamics) model is established for the low voltage winding region of an oil-immersed transformer according to the design parameters, and the detailed temperature distribution within the region is obtained by numerical simulation. On this basis, the RSM (response surface methodology) is adopted to optimize the structure parameters with the purpose of minimizing the hot spot temperature. After a sequence of designed experiments, the second-order polynomial response surface and the SVM (support vector machine) response surface are established respectively. The analysis of their errors shows that the SVM response surface can be better used to fit the approximation. Finally, the PSO (particle swarm optimization) algorithm is employed to get the optimal structure parameters of the winding based on the SVM response surface. The results show that the optimization method can significantly reduce the hot spot temperature of the winding, which provides a guiding direction for the optimal design of the winding structure of transformers.


Sign in / Sign up

Export Citation Format

Share Document