Positional tolerance analysis and error correction of micro-UAV swarm based antenna arrays

Author(s):  
J.S. Petko ◽  
D.H. Werner
2021 ◽  
Vol 143 (8) ◽  
Author(s):  
A. Korbi ◽  
M. Tlija ◽  
B. Louhichi

Abstract Nowadays, the tolerancing integration in computer-aided design (CAD) tools remains among the major goals of mechanical manufacturers. In the virtual product development, ideal and rigid models are used in the digital mockup (DMU). Hence, research works developed integrated CAD models for tolerance analysis, while considering manufacturing defects. However, the tolerance analysis in the case of composite positional tolerance for feature patterns, commonly used in the industry, becomes a difficult activity with the consideration of parts deformations. Thus, this paper presents a novel CAD model for the tolerance analysis considering composite positional defect of features set and nonrigid component deformations due to external mechanical loads. The modeling of rigid components with dimensional defects is established based on the numerical perturbation method. Indeed, the relationships between driving and driven dimensions are determined to obtain the configurations in maximum and least material of the CAD model. Thereafter, the geometrical deviations are modeled by face displacements. The modeling of composite positional errors is performed while respecting the feature relating position tolerance zone framework and the pattern-location tolerance zone framework constraints, as well as the maximum or least material condition. The deviations caused by nonrigid part deformations are considered by the integration of finite element results into the CAD model. The realistic configurations of the assembly are obtained after the updating of mating constraints between rigid and nonrigid parts with defects. The composite positional tolerance is analyzed with the simulation of relative motion between parts. A case study is proposed to evaluate the developed tolerancing method.


2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Ying Zhang ◽  
DanNi Zhao ◽  
Qiong Wang ◽  
ZhengBin Long ◽  
Xiaofeng Shen

This paper analyzes array pattern tolerance against excitation errors. The nonprobabilistic interval analysis algorithm is used for tolerance analysis of the nonideal uniform linear array in this work. Toward this purpose, corresponding interval models of the power pattern functions are established, respectively, with the consideration of the amplitude errors, phase errors, or both simultaneously, in antenna arrays. The tolerance for the amplitude-phase error of the main function parameters including the beamwidth, sidelobe level, and the directivity is simulated by computer according to the indicators and the actual requirements. Accordingly, the worst admissible performance of an array can be evaluated, which may provide theoretical reference for optimal antenna array design. As for the problem of array synthesis in the presence of various array errors, interval analysis-convex programming (IA-CP) is presented. Simulation results show that the proposed IA-CP based synthesis technique is robust for the amplitude and phase errors.


2013 ◽  
Vol 61 (11) ◽  
pp. 5496-5507 ◽  
Author(s):  
Nicola Anselmi ◽  
Luca Manica ◽  
Paolo Rocca ◽  
Andrea Massa

Author(s):  
Andrea Massa ◽  
Paolo Rocca ◽  
Ennio Giaccari ◽  
Alfonso Farina

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Stanislav Ogurtsov ◽  
Diego Caratelli ◽  
Zhe Song

Electronically controlled antenna arrays, such as reconfigurable and phased antenna arrays, are essential elements of high-frequency 5G communication hardware. These antenna arrays are aimed at delivering specified communication scenarios and channel characteristics in the mm-wave parts of the 5G spectrum. At the same time, several challenges are associated with the development of such antenna structures, and these challenges mainly originate from their intended mass production, contemporary manufacturing technologies, integration with active RF chains, compact size, dense circuitry, and limitations in postmanufacturing tuning. Consequently, 5G antenna array designers are presented with contradictory design requirements and constraints. Furthermore, these designers need to handle large numbers of designable parameters of the antenna array models, which can be computationally expensive, especially for repetitive and adaptive simulations that are required in design optimization and tuning. Antenna array synthesis, namely, the process of finding positions, orientation, and excitation of the array radiators, is a challenging yet crucial part of antenna array development. This process ensures that the performance requirements of the antenna array are met. Therefore, there is a need for reliable yet fast automated computer-aided design (CAD) and synthesis tools that can support the development of 5G antenna array solutions, from the initial prototyping stage to the final manufacturing tolerance analysis. This paper presents an overview of recent advances in antenna array synthesis from the viewpoint of their applicability to the design of electronically reconfigurable and phased antenna arrays for wireless communications and remote sensing.


Sign in / Sign up

Export Citation Format

Share Document