A procedure for measurement of s-parameters and eye-diagram of backplane using two-port VNA

Author(s):  
Karel Hoffmann ◽  
Martin Randus
Keyword(s):  
Author(s):  
Keith Harber ◽  
Steve Brockett

Abstract This paper outlines the failure analysis of a Radio Frequency only (RF-only) failure on a complex Multimode Multiband Power Amplifier (MMPA) module, where slightly lower gain was observed in one mode of operation. 2 port S-parameter information was collected and utilized to help localize the circuitry causing the issue. A slight DC electrical difference was observed, and simulation was utilized to confirm that difference was causing the observed S-parameters. Physical analysis uncovered a very visible cause for the RF-only failure.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Majidah H. Majeed ◽  
Riyadh Khlf Ahmed

AbstractSpectral Amplitude Coding-Optical Codes Division Multiple Access (SAC-OCDMA) is a future multiplexing technique that witnessed a dramatic attraction for eliminating the problems of the internet in optical network field such as multiple-user access and speed’s growth of the files or data traffic. In this research article, the performance of SAC-OCDMA system based on two encoding–decoding multidiagonal (MD) and Walsh Hadamard (WH) codes is enhanced utilizing three different schemes of dispersion compensating fiber (DCF): pre-, post- and symmetrical compensation. The system is simulated using Optisystem version 7.0 and Optigrating version 4.2. The performance of the proposed system is specified in terms of bit error rate (BER), Q-factor and eye diagram. It has been observed that the compensated system based on MD code is performs much better compared to the system based on WH code. On the other hand, the compensated SAC-OCDMA system with symmetrical DCF has the lowest values of BER and largest values of Q-factor, so it is considered the best simulated scheme contrasted with pre- and post-DCF.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1495
Author(s):  
Loris Pace ◽  
Nadir Idir ◽  
Thierry Duquesne ◽  
Jean-Claude De Jaeger

Due to the high switching speed of Gallium Nitride (GaN) transistors, parasitic inductances have significant impacts on power losses and electromagnetic interferences (EMI) in GaN-based power converters. Thus, the proper design of high-frequency converters in a simulation tool requires accurate electromagnetic (EM) modeling of the commutation loops. This work proposes an EM modeling of the parasitic inductance of a GaN-based commutation cell on a printed circuit board (PCB) using Advanced Design System (ADS®) software. Two different PCB designs of the commutation loop, lateral (single-sided) and vertical (double-sided) are characterized in terms of parasitic inductance contribution. An experimental approach based on S-parameters, the Cold FET technique and a specific calibration procedure is developed to obtain reference values for comparison with the proposed models. First, lateral and vertical PCB loop inductances are extracted. Then, the whole commutation loop inductances including the packaging of the GaN transistors are determined by developing an EM model of the device’s internal parasitic. The switching waveforms of the GaN transistors in a 1 MHz DC/DC converter are given for the different commutation loop designs. Finally, a discussion is proposed on the presented results and the development of advanced tools for high-frequency GaN-based power electronics design.


Author(s):  
Xiuqin Chu ◽  
Wenting Guo ◽  
Jun Wang ◽  
Feng Wu ◽  
Yuhuan Luo ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Junqing Lan ◽  
Xiaofeng Sun ◽  
Huacheng Zhu ◽  
Xiaoren Cao ◽  
Lan Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document