Sensor-on-CMOS dielectric characterization using temperature modulation

Author(s):  
Jun-Chau Chien ◽  
Ali M. Niknejad
1998 ◽  
Vol 08 (PR9) ◽  
pp. Pr9-113-Pr9-116 ◽  
Author(s):  
C. M. Weil ◽  
R. G. Geyer ◽  
L. Sengupta

Author(s):  
O. Breitenstein ◽  
J.P. Rakotoniaina ◽  
F. Altmann ◽  
J. Schulz ◽  
G. Linse

Abstract In this paper new thermographic techniques with significant improved temperature and/or spatial resolution are presented and compared with existing techniques. In infrared (IR) lock-in thermography heat sources in an electronic device are periodically activated electrically, and the surface is imaged by a free-running IR camera. By computer processing and averaging the images over a certain acquisition time, a surface temperature modulation below 100 µK can be resolved. Moreover, the effective spatial resolution is considerably improved compared to stead-state thermal imaging techniques, since the lateral heat diffusion is suppressed in this a.c. technique. However, a serious limitation is that the spatial resolution is limited to about 5 microns due to the IR wavelength range of 3 -5 µm used by the IR camera. Nevertheless, we demonstrate that lock-in thermography reliably allows the detection of defects in ICs if their power exceeds some 10 µW. The imaging can be performed also through the silicon substrate from the backside of the chip. Also the well-known fluorescent microthermal imaging (FMI) technique can be be used in lock-in mode, leading to a temperature resolution in the mK range, but a spatial resolution below 1 micron.


2021 ◽  
Vol 119 (1) ◽  
pp. 013901
Author(s):  
Qinpeng Zhu ◽  
Peihua Yang ◽  
Tao Zhang ◽  
Zehua Yu ◽  
Kang Liu ◽  
...  

Author(s):  
Ali Arif ◽  
Amna Zubair ◽  
Kashif Riaz ◽  
Muhammad Qasim Mehmood ◽  
Muhammad Zubair

2021 ◽  
Vol 26 ◽  
pp. 102076
Author(s):  
Georgia Andra Boni ◽  
Cristina Chirila ◽  
Lucian Dragos Filip ◽  
Ioana Pintilie ◽  
Lucian Pintilie

Sign in / Sign up

Export Citation Format

Share Document