Design of a fast validated dot product operation

Author(s):  
M. Daumas ◽  
D.W. Matula
Author(s):  
Yvan Paquot ◽  
Jochen Schröder ◽  
Benjamin J. Eggleton

Author(s):  
J. J. Hren ◽  
W. D. Cooper ◽  
L. J. Sykes

Small dislocation loops observed by transmission electron microscopy exhibit a characteristic black-white strain contrast when observed under dynamical imaging conditions. In many cases, the topography and orientation of the image may be used to determine the nature of the loop crystallography. Two distinct but somewhat overlapping procedures have been developed for the contrast analysis and identification of small dislocation loops. One group of investigators has emphasized the use of the topography of the image as the principle tool for analysis. The major premise of this method is that the characteristic details of the image topography are dependent only on the magnitude of the dot product between the loop Burgers vector and the diffracting vector. This technique is commonly referred to as the (g•b) analysis. A second group of investigators has emphasized the use of the orientation of the direction of black-white contrast as the primary means of analysis.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2859
Author(s):  
Seong-Yun Jeon ◽  
Mun-Kyu Lee

With the recent advances in mobile technologies, biometric verification is being adopted in many smart devices as a means for authenticating their owners. As biometric data leakage may cause stringent privacy issues, many proposals have been offered to guarantee the security of stored biometric data, i.e., biometric template. One of the most promising solutions is the use of a remote server that stores the template in an encrypted form and performs a biometric comparison on the ciphertext domain, using recently proposed functional encryption (FE) techniques. However, the drawback of this approach is that considerable computation is required for the inner-pairing product operation used for the decryption procedure of the underlying FE, which is performed in the authentication phase. In this paper, we propose an enhanced method to accelerate the inner-pairing product computation and apply it to expedite the decryption operation of FE and for faster remote biometric verification. The following two important observations are the basis for our improvement—one of the two arguments for the decryption operation does not frequently change over authentication sessions, and we only need to evaluate the product of multiple pairings, rather than individual pairings. From the results of our experiments, the proposed method reduces the time required to compute an inner-pairing product by 30.7%, compared to the previous best method. With this improvement, the time required for biometric verification is expected to decrease by up to 10.0%, compared to a naive method.


2012 ◽  
Vol 47 (3) ◽  
pp. 548-568 ◽  
Author(s):  
Ross J. Kang ◽  
Tobias Müller
Keyword(s):  

2006 ◽  
Vol 05 (02) ◽  
pp. 231-243
Author(s):  
DONGVU TONIEN

Recently, Hoit introduced arithmetic on blocks, which extends the binary string operation by Jacobs and Keane. A string of elements from the Abelian additive group of residues modulo m, (Zm, ⊕), is called an m-block. The set of m-blocks together with Hoit's new product operation form an interesting algebraic structure where associative law and cancellation law hold. A weaker form of unique factorization and criteria for two indecomposable blocks to commute are also proved. In this paper, we extend Hoit's results by replacing the Abelian group (Zm, ⊕) by an arbitrary monoid (A, ◦). The set of strings built up from the alphabet A is denoted by String(A). We extend the operation ◦ on the alphabet set A to the string set String(A). We show that (String(A), ◦) is a monoid if and only if (A, ◦) is a monoid. When (A, ◦) is a group, we prove that stronger versions of a cancellation law and unique factorization hold for (String(A), ◦). A general criterion for two irreducible strings to commute is also presented.


Sign in / Sign up

Export Citation Format

Share Document