Ultra-wideband dual polarization arrays with collocated elements for high isolation simultaneous transmit and receive systems

Author(s):  
Elias A. Alwan ◽  
Alexander Hovsepian ◽  
John L. Volakis
2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


Author(s):  
Xiangkun Kong ◽  
Lingqi Kong ◽  
Shunliu Jiang ◽  
Xuemeng Wang ◽  
Yukun Zou ◽  
...  

Author(s):  
Soufian Lakrit ◽  
Hicham Medkour ◽  
Sudipta Das ◽  
B. T. P. Madhav ◽  
Wael A. E. Ali ◽  
...  

Flexible ultra-wideband (UWB) antenna arrays with band notching characteristics are proposed in this work. A new wideband and high-isolation Wilkinson power divider (WPD) is designed to construct the feed systems of the UWB antenna arrays. The proposed WPD is achieved by introducing a significant modification to the conventional WPD and the new one is composed of four isolation stages. Multiple stages helped to achieve wideband from 2[Formula: see text]GHz to more than 12[Formula: see text]GHz with high isolation characteristics of more than 20[Formula: see text]dB and insertion losses around 3.3[Formula: see text]dB. The designed WPD is then applied to feed two UWB monopole antenna arrays which offer a notched band centered at 5.5[Formula: see text]GHz to reject interference from wireless local area network (WLAN) system and can be integrated with curved surfaces. To verify the performance of the proposed structure, two array configurations are practically fabricated and measured. The results show that both the arrays have UWB operational bandwidth (3.5–11.8[Formula: see text]GHz for [Formula: see text] array and 3.6–12[Formula: see text]GHz for [Formula: see text] array) that includes the UWB spectrum. Attractive agreement between simulation and measurement results is obtained. Furthermore, the bending test is carried out on the [Formula: see text] array showing the good performance of the proposed system when installed on curved surfaces for different bent angles.


Author(s):  
Cheng Chung Lin ◽  
Cheng Tar Wu ◽  
Yen Heng Chen ◽  
Dirk Zhou ◽  
Jiao Lv ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Chang Chen ◽  
Bo-Liang Liu ◽  
Ling Ji ◽  
Wei-Dong Chen

A dual-polarization substrate-integrated Fabry-Pérot cavity (SI-FPC) antenna is presented in this paper. The patch embedded in SI-FPC is excited with a near-field coupled feeding structure for V-polarization and with a slot-coupled feeding structure for H-polarization. The feeding structures are separated by a ground plane to improve the isolation between the ports. As a design example, an antenna operating at 10.0 GHz is fabricated and measured. A high degree of port isolation (<−40 dB) over the whole operating bandwidth (9.5–10.2 GHz) and good cross-polarization level (>25 dB) can be achieved.


2013 ◽  
Vol 760-762 ◽  
pp. 166-169
Author(s):  
Ze Wei Wu ◽  
Hao Li ◽  
Hua Fu ◽  
Jian Hua Xu

A 94 GHz waveguide orthomode transducer to be used as a receiver has been designed, fabricated, and measured. The waveguide choke, realized by a cascade of symmetrical steps, is introduced as the polarization discriminator, which could remarkable lower the difficulty of manufacturing and assembling in W-band and above. The designed orthomode transducer has low return loss, high isolation, and moderately broad bandwidth, and its performance closely follow the simulation results.


Sign in / Sign up

Export Citation Format

Share Document