A 94 Ghz Orthomode Transducer for Dual Polarization Receivers

2013 ◽  
Vol 760-762 ◽  
pp. 166-169
Author(s):  
Ze Wei Wu ◽  
Hao Li ◽  
Hua Fu ◽  
Jian Hua Xu

A 94 GHz waveguide orthomode transducer to be used as a receiver has been designed, fabricated, and measured. The waveguide choke, realized by a cascade of symmetrical steps, is introduced as the polarization discriminator, which could remarkable lower the difficulty of manufacturing and assembling in W-band and above. The designed orthomode transducer has low return loss, high isolation, and moderately broad bandwidth, and its performance closely follow the simulation results.

Author(s):  
Petrus Kerowe Goran ◽  
Eka Setia Nugraha

Wireless Fidelity (WiFi) devices are often used to access the internet network, both for working and in information searching. Accessing the internet can be administered anywhere provided that the area is within the WiFi devices range. A WiFi device uses 2.4 GHz and 5 GHz operating frequencies. There were several methods employed in the previous studies so that an antenna design could work in two different frequencies, i.e., winding bowtie method, Sierpinski method, and double-circular method. This paper employed a simple method, the slit method. The objective of this paper is to discover a simple antenna model that works on 2.4 GHz and 5 GHz frequencies. This paper employed a square patch microstrip antenna with a slit method. The dimensions of the designed square patch microstrip antenna were 42.03 mm × 27.13 mm × 0.035 mm. The antenna worked at 2.4 GHz and 5 GHz frequencies. The obtained simulation results after the optimization showed that the square patch microstrip antenna using the slit method acquired a value of S11 (return loss) of -10.15 dB at a frequency of 2.4 GHz and -37.315 dB at a frequency of 5 GHz.


Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 215 ◽  
Author(s):  
José Pérez-Escudero ◽  
Alicia Torres-García ◽  
Ramón Gonzalo ◽  
Iñigo Ederra

A simplified design of an inline transition between microstrip and rectangular waveguide is presented in this paper. The transition makes use of a dielectric filled rectangular waveguide (DFRW) as an intermediate step, which simplifies manufacturing and allows for an analytical design. The behavior of the transition has been experimentally validated in the W-band by means of a back-to-back configuration. Good performance has been achieved: a return loss greaterthan 10 dB and mean insertion loss lower than 1 dB.


2019 ◽  
Vol 30 ◽  
pp. 01006
Author(s):  
Alexander Kozhemyakin ◽  
Ivan Kravchenko

The paper presents design flow and simulation results of the W-band fundamental voltage-controlled oscillator in 0.13 μm SiGe BiCMOS technology for an automotive radar application. Oscillator provides fundamental oscillation range of 76.8 GHz to 81.2 GHz. According to simulation results phase noise is –89.3 dBc/Hz at 1 MHz offset, output power is –5.6 dBm and power consumption is 39 mW from 3.3 V source.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Chang Chen ◽  
Bo-Liang Liu ◽  
Ling Ji ◽  
Wei-Dong Chen

A dual-polarization substrate-integrated Fabry-Pérot cavity (SI-FPC) antenna is presented in this paper. The patch embedded in SI-FPC is excited with a near-field coupled feeding structure for V-polarization and with a slot-coupled feeding structure for H-polarization. The feeding structures are separated by a ground plane to improve the isolation between the ports. As a design example, an antenna operating at 10.0 GHz is fabricated and measured. A high degree of port isolation (<−40 dB) over the whole operating bandwidth (9.5–10.2 GHz) and good cross-polarization level (>25 dB) can be achieved.


2011 ◽  
Vol 130-134 ◽  
pp. 1990-1993 ◽  
Author(s):  
Kuang Da Wang ◽  
Wei Hong ◽  
Ke Wu

In this paper, a broadband and simple vertical transition between substrate integrated waveguide and standard air-filled rectangular waveguide is design and experimentally verified. From full-wave simulation of the structure, a relative bandwidth of 19.5% in W-band with return loss better than 20dB is reached. Then, five copies of back-to-back connected transitions are fabricated on RT/Duroid 5880 substrate. The experimental results show that the transition pairs have an average of 15% relative bandwidth with return loss better than 12dB and insert loss lower than 1.2dB. To explain the differences between simulated and tested results, an error analysis is presented.


2014 ◽  
Vol 6 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Yung-Wei Chen ◽  
Hung-Wei Wu ◽  
Yan-Kuin Su

In this paper, a new multi-layered triple-passband bandpass filter using embedded and stub-loaded stepped impedance resonators (SIRs) is proposed. The filter is designed to have triple-passband at 1.8, 2.4, and 3.5 GHz. The 1st and 2nd passbands (1.8/2.4 GHz) are simultaneously generated by controlling the impedance and length ratios of the embedded SIRs (on top layer). The 3rd passband (3.5 GHz) is generated by using the stub-loaded SIR (on bottom layer). Using the embedded SIR, the even modes can be tuned within very wide frequency range and without affecting the odd modes. Therefore, the design of multi-band filters with very close passbands can be easily achieved and having a high isolation between the passbands. The filter can provide the multi-path propagation to enhance the frequency response and achieving the compact circuit size. The measured results are in good agreement with the full-wave electromagnetic simulation results.


2013 ◽  
Vol 765-767 ◽  
pp. 2758-2761
Author(s):  
Yan Zhong Yu ◽  
Zhong Yi Huang ◽  
Cai Qiang Zheng ◽  
Yong Xing Wu

Based on Hilbert theory and technique, a folded tag antenna for RFID application is presented in this paper. In order to reduce the size of tag, a Hilbert fractal structure is employed. Additionally, to match flexibly the impedance between antenna and chip, a folded technique is employed. The input impedance of tag antenna can be adjusted easily by changing the high of folded structure. A designed tag antenna dimension is 23.32mm×7.66mm, and its return loss, bandwidth, gain and theoretical detection distance are given at 2.45GHz by HFSS software. The simulation results show that the designed antenna can meet the requirements of the practical applications.


2015 ◽  
Vol 738-739 ◽  
pp. 103-106
Author(s):  
Yong Fang ◽  
Bao Qing Zeng ◽  
Wen Tao Zhang ◽  
Pu Wang

This paper presents millimeter wave characterization and models of various wire bond transitions between chip’s ground-signal-ground pad (GSG) and microstrip (MS), include single-wire-nomatch MS-GSG transition, double-wire-nomatch MS-GSG, single-wire-match MS-GSG transition, and double-wire-match MS-GSG transition. It also presents the 3D full-wave electromagnetic simulation. Analysis results show that the double-wire-match MS-GSG transition’s characteristic is better than other three transitions in the whole W band. The accurate extracted parameter values are used for the lumped equivalent circuit model, whose simulation results are good with the full wave simulation results. The error between lumped equivalent circuit and full-wave models is of the order of ±0.2dB for S11 and S21 in the frequency range 75 - 105GHz. The proposed lumped equivalent circuit is suitable to be implemented in commercial microwave CAD tools for the electromagnetic sensor designing.


Sign in / Sign up

Export Citation Format

Share Document