Utilization of InGaAsP charge layer in InGaAs/InP SACM APD

Author(s):  
D. Hasko ◽  
F. Uherek ◽  
J. Kovac ◽  
J. Jakabovic ◽  
J. Skriniarova ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Victor Kwan ◽  
Styliani Consta

<div>Charged droplets play a central role in native mass spectrometry, atmospheric aerosols and in serving as micro-reactors for accelerating chemical reactions. The surface excess charge layer in droplets has often been associated with distinct chemistry. Using molecular simulations for droplets with Na+ and Cl- ions we have found that this layer is ≈ 1.5−1.7 nm thick and depending on the droplet size it includes 33%-55% of the total number of ions. Here, we examine the effect of droplet size and nature of ions in the structure of the surface excess charge layer by using molecular dynamics. We find that in the presence of simple ions the thickness of the surface excess charge layer is invariant not only with respect to droplet size but also with respect to the nature of the simple ions and it is not sensitive to fine details of different force fields used in our simulations.</div><div> In the presence of macroions the excess surface charge layer may extend to 2.0. nm. For the same droplet size, iodide and model hydronium ions show considerably higher concentration than the sodium and chloride ions. <br></div><div>We also find that differences in the average water dipole orientation in the presence of cations and anions in this layer are reflected in the charge distributions. Within the surface charge layer, the number of hydrogen bonds reduces gradually relative to the droplet interior where the number of hydrogen bonds is on the average 2.9 for droplets of diameter < 4 nm and 3.5 for larger droplets. The decrease in the number of hydrogen bonds from the interior to the surface is less pronounced in larger droplets. In droplets with diameter < 4 nm and high concentration of ions the charge of the ions is not compensated only by the solvent polarization charge but by the total charge that also includes the other free charge. This finding shows exceptions to the commonly made assumption that the solvent compensates the charge of the ions in solvents with very high dielectric constant. The study provides molecular insight into the bi-layer droplet structure assumed in the equilibrium partitioning model of C. Enke and assesses critical assumptions of the Iribarne-Thomson model for the ion-evaporation mechanism. <br></div>


2013 ◽  
Vol 06 (04) ◽  
pp. 1330004 ◽  
Author(s):  
RÜDIGER-A. EICHEL ◽  
EMRE ERDEM ◽  
PETER JAKES ◽  
ANDREW OZAROWSKI ◽  
JOHAN VAN TOL ◽  
...  

The defect structure of ZnO nanoparticles is characterized by means of high-field electron paramagnetic resonance (EPR) spectroscopy. Different point and complex defects could be identified, located at the "bulk" or the surface region of the nanoparticles. In particular, by exploiting the enhanced g-value resolution at a Larmor frequency of 406.4 GHz, it could be shown that the resonance commonly observed at g = 1.96 is comprised of several overlapping resonances from different defects. Based on the high-field EPR analysis, the development of a space-charge layer could be monitored that consists of (shallow) donor-type [Formula: see text] defects at the "bulk" and acceptor-type [Formula: see text] and complex [Formula: see text] defects at the surface. Application of a core-shell model allows to determine the thickness of the depletion layer to 1.0 nm for the here studied compounds [J.J. Schneider et al., Chem. Mater.22, 2203 (2010)].


1974 ◽  
Vol 3 (12) ◽  
pp. 1459-1462
Author(s):  
Masahiro Kotani ◽  
Yoko Watanabe ◽  
Tomoko Kato

1997 ◽  
Vol 31 (10) ◽  
pp. 1053-1056 ◽  
Author(s):  
T. V. Blank ◽  
Yu. A. Gol’dberg ◽  
O. V. Konstantinov ◽  
O. I. Obolenskii ◽  
E. A. Posse

1994 ◽  
Vol 357 ◽  
Author(s):  
D. Lubben ◽  
F. A. Modine

AbstractA large enhancement in the ionic conductivity of certain compounds occurs when the compound is produced as a composite material containing a finely-dispersed non-conductor such as SiO2 or Al2O3 This effect has been reported on for more than 20 years, and it is well established that the enhancement is associated with the presence of interfaces. The popular explanation has been based on a model which contends that the enhancement is due to a space-charge layer which forms to compensate a net charge layer at an interface. A different model proposes that extended defects such as dislocations and grain boundaries, either resulting from or stabilized by the interface, are responsible for the enhancement. This paper describes recent experiments which strongly support the latter model. The ionic conductivities of LiI and CaF2 thin films grown on sapphire(0001) substrates were monitored in-situ during deposition as a function of film thickness and deposition conditions. LiI films grown at 27°C exhibited a region of enhanced conduction within 100 nm of the substrate and a lesser enhancement as the film thickness was increased further. This conduction enhancement was not stable but annealed out with a characteristic log(time) dependence. The observed annealing behavior was fit with a model based on dislocation motion which implies that the increase in conduction near the interface is due to extended defects generated during the growth process. LiI films grown at higher temperatures (100°C) in order to reduce the grown-in defects showed no interfacial conduction enhancement. X-ray diffraction measurements suggest that these high-temperature LiI films nucleate as faceted epitaxial islands with a stable misfit dislocation density defined by the epitaxial relationship between the substrate and film. CaF2 films grown at 200°C showed a behavior similar to the 27°C LiI films, with a region of thermally unstable enhanced conduction that occurs within 10 nm of the substrate. Amorphous Al2O3 films deposited over the CaF2 layers created no additional enhancement but did increase the stability of the conduction, consistent with an extended defect model. Simultaneous deposition of CaF2 and Al2O3 produced films consisting of very-fine-grained CaF2 and particles of amorphous Al2O23 (5-10 nm grain and particle size) and a high defect density which was stable even well above the growth temperature. Measured conduction in the composite at 200°C was approximately 360 times that of bulk CaF2.


Sign in / Sign up

Export Citation Format

Share Document