Molecular Characterization of the Surface Excess Charge Layer in Droplets

Author(s):  
Victor Kwan ◽  
Styliani Consta

<div>Charged droplets play a central role in native mass spectrometry, atmospheric aerosols and in serving as micro-reactors for accelerating chemical reactions. The surface excess charge layer in droplets has often been associated with distinct chemistry. Using molecular simulations for droplets with Na+ and Cl- ions we have found that this layer is ≈ 1.5−1.7 nm thick and depending on the droplet size it includes 33%-55% of the total number of ions. Here, we examine the effect of droplet size and nature of ions in the structure of the surface excess charge layer by using molecular dynamics. We find that in the presence of simple ions the thickness of the surface excess charge layer is invariant not only with respect to droplet size but also with respect to the nature of the simple ions and it is not sensitive to fine details of different force fields used in our simulations.</div><div> In the presence of macroions the excess surface charge layer may extend to 2.0. nm. For the same droplet size, iodide and model hydronium ions show considerably higher concentration than the sodium and chloride ions. <br></div><div>We also find that differences in the average water dipole orientation in the presence of cations and anions in this layer are reflected in the charge distributions. Within the surface charge layer, the number of hydrogen bonds reduces gradually relative to the droplet interior where the number of hydrogen bonds is on the average 2.9 for droplets of diameter < 4 nm and 3.5 for larger droplets. The decrease in the number of hydrogen bonds from the interior to the surface is less pronounced in larger droplets. In droplets with diameter < 4 nm and high concentration of ions the charge of the ions is not compensated only by the solvent polarization charge but by the total charge that also includes the other free charge. This finding shows exceptions to the commonly made assumption that the solvent compensates the charge of the ions in solvents with very high dielectric constant. The study provides molecular insight into the bi-layer droplet structure assumed in the equilibrium partitioning model of C. Enke and assesses critical assumptions of the Iribarne-Thomson model for the ion-evaporation mechanism. <br></div>

2020 ◽  
Author(s):  
Victor Kwan ◽  
Styliani Consta

Charged droplets play a central role in native mass spectrometry, atmospheric aerosols and in serving as micro-reactors for accelerating chemical reactions. The surface excess charge layer in droplets has often been associated with distinct chemistry. Using molecular simulations we have found that this layer is ≈ 1.5−1.7 nm thick and depending on the droplet size it includes 33%-55% of the total number of ions. Here, we examine the effect of droplet size and sign of ions in the structure of the surface excess charge layer by using molecular dynamics. We find that the thickness of the surface excess charge layer is invariant not only with respect to droplet size but also with respect to the nature of the ions and it is not sensitive to fine details of different force fields used in our simulations. We also find that differences in the average water dipole orientation in the presence of positive and negative ions in this layer are reflected in the charge distributions. Within the surface charge layer, the number of hydrogen bonds reduces gradually relative to the droplet interior where the number of hydrogen bonds is on the average 2.9 for droplets of diameter < 4 nm and 3.5 for larger droplets. The decrease in the number of hydrogen bonds from the interior to the surface is less pronounced in larger droplets. In droplets with diameter < 4 nm and high concentration of ions the charge of the ions is not compensated only by the solvent polarization charge but by the total charge that also includes the other free charge. This finding shows exceptions to the commonly made assumption that the solvent “neutralizes” the charge of the ions in solvents with very high dielectric constant. The simulation findings provide molecular insight into the bi-layer droplet structure assumed in the equilibrium partitioning model of C. Enke.<br>


2020 ◽  
Author(s):  
Victor Kwan ◽  
Styliani Consta

<div>Charged droplets play a central role in native mass spectrometry, atmospheric aerosols and in serving as micro-reactors for accelerating chemical reactions. The surface excess charge layer (SECL) in droplets has often been associated with distinct chemistry. Using molecular simulations for droplets with Na+ and Cl- ions we have found that this layer is ≈ 1.5−1.7 nm thick and depending on the droplet size it includes 33%-55% of the total number of ions. Here, we examine the effect of droplet size and nature of ions in the structure of SECL by using molecular dynamics. We find that in the presence of simple ions the thickness of the surface excess charge layer is invariant not only with respect to droplet size but also with respect to the nature of the simple ions and it is not sensitive to fine details of different force fields used in our simulations.</div><div> In the presence of macroions the SECL may extend to 2.0. nm. For the same droplet size, iodide and model H3O+ ions show considerably higher concentration than the sodium and chloride ions. In nano-drops, the SECL does not have the highest concentration of ions. We identify the maximum ion concentration region that may overlap with SECL in nano-drops. We also find that the differences in the average water dipole orientation in the presence of cations and anions in this layer are reflected in the charge distributions. Within the surface charge layer, the number of hydrogen bonds reduces gradually relative to the droplet interior where the number of hydrogen bonds is on the average 2.9 for droplets of diameter < 4 nm and 3.5 for larger droplets. The decrease in the number of hydrogen bonds from the interior to the surface is less pronounced in larger droplets. In droplets with diameter < 4 nm and high concentration of ions the charge of the ions is not compensated only by the solvent polarization charge but by the total charge that also includes the other free charge. This finding shows exceptions to the commonly made assumption that the solvent compensates the charge of the ions in solvents with very high dielectric constant. The study provides molecular insight into the bi-layer droplet structure assumed in the equilibrium partitioning model (EPM) of C. Enke and assesses critical assumptions of the Iribarne-Thomson model for the ion-evaporation mechanism. We suggest the extension of the bi-layer droplet structure in EPM to include the maximum ion concentration region that may not coincide with SECL in nanodrops. We compute the ion concentrations in SECL, which are those that should enter the kinetic equation in the ion-evaporation mechanism, instead of the overall drop ion concentration that has been used thus far.<br></div>


2020 ◽  
Author(s):  
Victor Kwan ◽  
Styliani Consta

<div>Charged droplets play a central role in native mass spectrometry, atmospheric aerosols and in serving as micro-reactors for accelerating chemical reactions. The surface excess charge layer (SECL) in droplets has often been associated with distinct chemistry. Using molecular simulations for droplets with Na+ and Cl- ions we have found that this layer is ≈ 1.5−1.7 nm thick and depending on the droplet size it includes 33%-55% of the total number of ions. Here, we examine the effect of droplet size and nature of ions in the structure of SECL by using molecular dynamics. We find that in the presence of simple ions the thickness of the surface excess charge layer is invariant not only with respect to droplet size but also with respect to the nature of the simple ions and it is not sensitive to fine details of different force fields used in our simulations.</div><div> In the presence of macroions the SECL may extend to 2.0. nm. For the same droplet size, iodide and model H3O+ ions show considerably higher concentration than the sodium and chloride ions. In nano-drops, the SECL does not have the highest concentration of ions. We identify the maximum ion concentration region that may overlap with SECL in nano-drops. We also find that the differences in the average water dipole orientation in the presence of cations and anions in this layer are reflected in the charge distributions. Within the surface charge layer, the number of hydrogen bonds reduces gradually relative to the droplet interior where the number of hydrogen bonds is on the average 2.9 for droplets of diameter < 4 nm and 3.5 for larger droplets. The decrease in the number of hydrogen bonds from the interior to the surface is less pronounced in larger droplets. In droplets with diameter < 4 nm and high concentration of ions the charge of the ions is not compensated only by the solvent polarization charge but by the total charge that also includes the other free charge. This finding shows exceptions to the commonly made assumption that the solvent compensates the charge of the ions in solvents with very high dielectric constant. The study provides molecular insight into the bi-layer droplet structure assumed in the equilibrium partitioning model (EPM) of C. Enke and assesses critical assumptions of the Iribarne-Thomson model for the ion-evaporation mechanism. We suggest the extension of the bi-layer droplet structure in EPM to include the maximum ion concentration region that may not coincide with SECL in nanodrops. We compute the ion concentrations in SECL, which are those that should enter the kinetic equation in the ion-evaporation mechanism, instead of the overall drop ion concentration that has been used thus far.<br></div>


2019 ◽  
Author(s):  
Chem Int

The assessment of groundwater is essential for the estimation of suitability of water for safe use. An attempt has been made to study the groundwater of selected areas of Punjab (Sheikhupura &amp; Sahiwal) and Sindh (Sindh, Jawar Dharki and Dharki), Pakistan. The results indicate that pH, color and odor were all within limits of WHO that is pH ranges 6.5–8.5, colorless and odorless, respectively. The high values of suspended solids were observed in the Sindh-1 and Dharki samples. Microbiologically only Sahiwal and Jawar Dharki were found fit for drinking purpose. Trace metals analysis of Sheikhupura-1 and Sindh-1 showed that values do not fall within limits of WHO for Iron. The ionic concentration analysis showed that high bicarbonate (HCO3-), ions are present in the samples of Sahiwal and Dharki; Sindh-1 and Jawar Dharki samples showed very high concentration for chloride ions, all samples were satisfactory level for sulphate (SO42-), sodium, magnesium and phosphate ions except samples of Sindh-1 and Jawar Dharki. High concentration of calcium and potassium ions was observed in samples of Sindh-1, while all other samples were found fit for drinking purposes in respect of nitrate, nitrite and ammonium ions. The high concentration of Fluoride was found only in Sheikhupura-2 samples.


2009 ◽  
Vol 65 (6) ◽  
pp. m615-m616 ◽  
Author(s):  
Nam-Ho Kim ◽  
In-Chul Hwang ◽  
Kwang Ha

In the title compound, [PdCl2(C10H8N2)]·CH2Cl2, the Pd2+ion is four-coordinated in a slightly distorted square-planar environment by two N atoms of the 2,2′-bipyridine (bipy) ligand and two chloride ions. The compound displays intramolecular C—H...Cl hydrogen bonds and pairs of complex molecules are connected by intermolecular C—H...Cl hydrogen bonds. Intermolecular π–π interactions are present between the pyridine rings of the ligand, the shortest centroid–centroid distance being 4.096 (3) Å. As a result of the electronic nature of the chelate ring, it is possible to create π–π interactions to its symmetry-related counterpart [3.720 (2) Å] and also with a pyridine ring [3.570 (3) Å] of the bipy unit. The present structure is a redetermination of a previous structure [Vicenteet al.(1997). Private communication (refcode PYCXMN02). CCDC, Cambridge, England]. In the new structure refinement all H atoms were located in a difference Fourier synthesis. Their coordinates were refined freely, together with isotropic displacement parameters.


CORROSION ◽  
10.5006/3464 ◽  
2020 ◽  
Vol 76 (9) ◽  
pp. 815-825
Author(s):  
Ryotaro Yamamoto ◽  
Hiroshi Yakuwa ◽  
Matsuho Miyasaka ◽  
Nobuyoshi Hara

The effects of the α/γ-phase ratio on pitting corrosion initiation and growth in cast duplex stainless steel were studied, including the preferential dissolution of the two phases inside the pits, using pitting potential measurement and potentiostatic polarization measurement with a high concentration of chloride ions and a low pH. The initiation of pitting was not dependent on the α-phase ratio. The γ phase preferentially dissolves when a high potential in the active dissolution region is applied, and the α phase preferentially dissolves when a low potential is applied. In addition, with an increase in α-phase ratio, the potential range where the α phase preferentially dissolves enlarged toward the higher potential side. The growth rate of stable pitting increased with the α-phase ratio. Dissolution of the α phase increased with an increase in the α-phase ratio. This phenomenon is presumably caused by the decreased amount of Cr in the α phase, resulting from the increased α-phase ratio, as well as by Cr depletion around Cr nitrides.


Sign in / Sign up

Export Citation Format

Share Document