A linearized VBE bandgap voltage reference with wide temperature range

Author(s):  
Chen Xiaofei ◽  
Liu Fanhong ◽  
Zou Xuecheng ◽  
Lin Shuangxi
2018 ◽  
Vol 232 ◽  
pp. 04072
Author(s):  
XingGuo Tian ◽  
XiaoNing Xin ◽  
DongYang Han

In order to meet the market demand for wide temperature range and high precision bandgap voltage reference, this paper designs a bandgap reference with wide temperature range and low temperature coefficient. In this paper, the basic implementation principle of the bandgap reference is analyzed.On the basis of the traditional bandgap reference circuit structure,this design adds a trimming network and a temperature compensation network. A new Gaussian bell curve compensation technique is adopted to compensate the low temperature section, and the normal temperature section and the high temperature section respectively. Compared with the existing compensation technology, the versatility and the compensation effect is better. The designed circuit is designed and manufactured based on the Huahong HHNECGE0.35um process. The results show that the output voltage is 2.5V at 2.7V supply voltage and temperature range of -40-125°C.at typical process angle ,the temperature coefficient is 0.54618 PPm/°C,and is within 1PPm/°C at other process angles.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450107 ◽  
Author(s):  
JUN-DA CHEN ◽  
CHENG-KAI YE

This paper presents an approach to the design of a high-precision CMOS voltage reference. The proposed circuit is designed for TSMC 0.35 μm standard CMOS process. We design the first-order temperature compensation bandgap voltage reference circuit. The proposed post-simulated circuit delivers an output voltage of 0.596 V and achieves the reported temperature coefficient (TC) of 3.96 ppm/°C within the temperature range from -60°C to 130°C when the supply voltage is 1.8 V. When simulated in a smaller temperature range from -40°C to 80°C, the circuit achieves the lowest reported TC of 2.09 ppm/°C. The reference current is 16.586 μA. This circuit provides good performances in a wide range of temperature with very small TC.


2013 ◽  
Vol 22 (01) ◽  
pp. 1250069 ◽  
Author(s):  
SERGIO SAPONARA ◽  
LUCA FANUCCI ◽  
TOMMASO BALDETTI ◽  
ENRICO PARDI

The paper presents a bandgap voltage reference (BGR) implemented in TSMC 0.25 μm BCD technology for an automotive application. To withstand a car's battery large voltage variations, from 5 V to 40 V, the circuit features an embedded pseudo-regulator providing a stable bias current for the bandgap core. High-voltage (HV) MOS count has been kept low thus allowing the design of a compact BGR with an area of 0.118 mm2. The BGR has been designed to operate in automotive extended temperature range (-40°C to 150°C) and it provides a stable voltage of 1.21 V, which is also used as reference for a cascade 3.7 V linear regulator. Measurements carried on fabricated IC samples prove the effectiveness of the BGR design in terms of supported input voltage variations and operating temperature range, temperature drift, line regulation and PSRR performance.


Sign in / Sign up

Export Citation Format

Share Document