Steganographic Scheme for VQ Compressed Images Using Progressive Exponential Clustering

Author(s):  
Yue Li ◽  
Chang-tsun Li
Keyword(s):  
2021 ◽  
pp. 1-11
Author(s):  
Kusan Biswas

In this paper, we propose a frequency domain data hiding method for the JPEG compressed images. The proposed method embeds data in the DCT coefficients of the selected 8 × 8 blocks. According to the theories of Human Visual Systems  (HVS), human vision is less sensitive to perturbation of pixel values in the uneven areas of the image. In this paper we propose a Singular Value Decomposition based image roughness measure (SVD-IRM) using which we select the coarse 8 × 8 blocks as data embedding destinations. Moreover, to make the embedded data more robust against re-compression attack and error due to transmission over noisy channels, we employ Turbo error correcting codes. The actual data embedding is done using a proposed variant of matrix encoding that is capable of embedding three bits by modifying only one bit in block of seven carrier features. We have carried out experiments to validate the performance and it is found that the proposed method achieves better payload capacity and visual quality and is more robust than some of the recent state-of-the-art methods proposed in the literature.


2021 ◽  
Vol 7 (7) ◽  
pp. 119
Author(s):  
Marina Gardella ◽  
Pablo Musé ◽  
Jean-Michel Morel ◽  
Miguel Colom

A complex processing chain is applied from the moment a raw image is acquired until the final image is obtained. This process transforms the originally Poisson-distributed noise into a complex noise model. Noise inconsistency analysis is a rich source for forgery detection, as forged regions have likely undergone a different processing pipeline or out-camera processing. We propose a multi-scale approach, which is shown to be suitable for analyzing the highly correlated noise present in JPEG-compressed images. We estimate a noise curve for each image block, in each color channel and at each scale. We then compare each noise curve to its corresponding noise curve obtained from the whole image by counting the percentage of bins of the local noise curve that are below the global one. This procedure yields crucial detection cues since many forgeries create a local noise deficit. Our method is shown to be competitive with the state of the art. It outperforms all other methods when evaluated using the MCC score, or on forged regions large enough and for colorization attacks, regardless of the evaluation metric.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2018 ◽  
Vol 54 (6) ◽  
pp. 354-355
Author(s):  
H.‐G. Kim ◽  
J.‐S. Park ◽  
D.‐G. Kim ◽  
H.‐K. Lee

Author(s):  
Jinwei Wang ◽  
Wei Huang ◽  
Xiangyang Luo ◽  
Yun-Qing Shi ◽  
Sunil Kr. Jha

Due to the popularity of JPEG format images in recent years, JPEG images will inevitably involve image editing operation. Thus, some tramped images will leave tracks of Non-aligned double JPEG ( NA-DJPEG ) compression. By detecting the presence of NA-DJPEG compression, one can verify whether a given JPEG image has been tampered with. However, only few methods can identify NA-DJPEG compressed images in the case that the primary quality factor is greater than the secondary quality factor. To address this challenging task, this article proposes a novel feature extraction scheme based optimized pixel difference ( OPD ), which is a new measure for blocking artifacts. Firstly, three color channels (RGB) of a reconstructed image generated by decompressing a given JPEG color image are mapped into spherical coordinates to calculate amplitude and two angles (azimuth and zenith). Then, 16 histograms of OPD along the horizontal and vertical directions are calculated in the amplitude and two angles, respectively. Finally, a set of features formed by arranging the bin values of these histograms is used for binary classification. Experiments demonstrate the effectiveness of the proposed method, and the results show that it significantly outperforms the existing typical methods in the mentioned task.


Sign in / Sign up

Export Citation Format

Share Document