Sensor fusion for motion capture system based on system identification

Author(s):  
ChanJong Park ◽  
Hyeong-Kyo Kim ◽  
Il-Kwon Jeong ◽  
Kwang Yun Wohn
Author(s):  
Shohei Shibata ◽  
Kiyoshi Hirose ◽  
Takeshi Naruo ◽  
Yuichi Shimizu

This study aimed to (a) develop an algorithm that could estimate a baseball bat trajectory from the beginning of the swing to the follow-through phase during a practice swing without a ball and (b) evaluate the accuracy of the proposed method using a three-dimensional motion capture system. The sensor fusion using the adaptive Kalman filter for compensating velocity decreased the error of acceleration integration during the follow-through phase. Further, the three-dimensional bat trajectory in a global coordinate was estimated by combining the sensor fusion and compensation by motion characteristics. The three-dimensional bat trajectory from the swing beginning to the follow-through phase estimated by the proposed method was compared with the three-dimensional bat trajectory obtained by the three-dimensional motion capture system. The proposed method achieved a root mean square of the error of 7.72 km/h for velocity, which was less than the root mean square of the error (8.91 km/h) obtained by simple time integration of forward direction. These results indicate that the error by acceleration integration during the follow-through phase is compensated. The proposed method is, thus, deemed effective and can be used to evaluate baseball swing, including the follow-through phase, with high accuracy.


2007 ◽  
Vol 07 (04) ◽  
pp. 641-662
Author(s):  
CHAN JONG PARK ◽  
KWANG YUN WOHN

We propose a sensor fusion technique for motion capture system. In our system, two kinds of sensors are used for mutual assistance. Six magnetic sensors are attached on the arms and feet for assisting twelve optical markers and six optical markers, which are attached on the arms and feet of a performer, respectively. The optical marker information is not always complete because the optical markers can be hidden due to obstacles. In this case, magnetic sensor information is used to link discontinuous optical marker information. We use a system identification technique for modeling the relation between the two signals of sensor and marker. We determine the best model from the set of candidate models using the canonical system identification technique. In order to show the efficiency of the proposed system, experiments are performed for motion capture data obtained from both the optical and magnetic motion capture system, and the animation results are shown.


2015 ◽  
Vol 356 ◽  
pp. 72-85 ◽  
Author(s):  
Byung Kwan Oh ◽  
Jin Woo Hwang ◽  
Yousok Kim ◽  
Tongjun Cho ◽  
Hyo Seon Park

Author(s):  
Jonathan Kenneth Sinclair ◽  
Lindsay Bottoms

AbstractRecent epidemiological analyses in fencing have shown that injuries and pain linked specifically to fencing training/competition were evident in 92.8% of fencers. Specifically the prevalence of Achilles tendon pathology has increased substantially in recent years, and males have been identified as being at greater risk of Achilles tendon injury compared to their female counterparts. This study aimed to examine gender differences in Achilles tendon loading during the fencing lunge.Achilles tendon load was obtained from eight male and eight female club level epee fencers using a 3D motion capture system and force platform information as they completed simulated lunges. Independent t-tests were performed on the data to determine whether differences existed.The results show that males were associated with significantly greater Achilles tendon loading rates in comparison to females.This suggests that male fencers may be at greater risk from Achilles tendon pathology as a function of fencing training/ competition.


2006 ◽  
Vol 99 (8) ◽  
pp. 08B312 ◽  
Author(s):  
S. Hashi ◽  
M. Toyoda ◽  
M. Ohya ◽  
Y. Okazaki ◽  
S. Yabukami ◽  
...  

Author(s):  
Unai Zabala ◽  
Igor Rodriguez ◽  
José María Martínez-Otzeta ◽  
Elena Lazkano

AbstractNatural gestures are a desirable feature for a humanoid robot, as they are presumed to elicit a more comfortable interaction in people. With this aim in mind, we present in this paper a system to develop a natural talking gesture generation behavior. A Generative Adversarial Network (GAN) produces novel beat gestures from the data captured from recordings of human talking. The data is obtained without the need for any kind of wearable, as a motion capture system properly estimates the position of the limbs/joints involved in human expressive talking behavior. After testing in a Pepper robot, it is shown that the system is able to generate natural gestures during large talking periods without becoming repetitive. This approach is computationally more demanding than previous work, therefore a comparison is made in order to evaluate the improvements. This comparison is made by calculating some common measures about the end effectors’ trajectories (jerk and path lengths) and complemented by the Fréchet Gesture Distance (FGD) that aims to measure the fidelity of the generated gestures with respect to the provided ones. Results show that the described system is able to learn natural gestures just by observation and improves the one developed with a simpler motion capture system. The quantitative results are sustained by questionnaire based human evaluation.


Author(s):  
Pranav Madhav Kuber ◽  
Ehsan Rashedi

A new forklift backrest has been developed by incorporating adjustability concepts into the design to facilitate comfort to a wide range of users. We have conducted a comparative study between the new and original backrests to assess the effectiveness of design features. Using the phenomenon of restlessness, discomfort of the user was associated with the amount of body movement, where we have used a motion- capture system and a force platform to quantify the individuals’ movement for a wide range of body sizes. Meanwhile, subjective comfort and design feedback were collected using a questionnaire. Our results showed a reduction in the mean torso movement and the maximum center of pressure change of location by 300 and 6 mm, respectively, for the new design. Taking advantage of adjustability feature, the new backrest design exhibited enhanced comfort for longer durations and reduced magnitude of discomfort for a wide range of participants’ body sizes.


Sign in / Sign up

Export Citation Format

Share Document