Design of semi-active air suspension system based on backstepping sliding mode control

Author(s):  
Jun-Ying Wang ◽  
Li-Ying Sun
Author(s):  
Jing Zhao ◽  
Pak Kin Wong ◽  
Xinbo Ma ◽  
Zhengchao Xie

This article proposes an integrated sliding mode control–two-point wheelbase preview strategy for semi-active air suspension system with gas-filled adjustable shock absorber. First of all, a vehicle suspension model with rolling lobe air spring and gas-filled adjustable shock absorber is built, following with a road input model for the front wheel. By describing the detailed structure and working process of the gas-filled adjustable shock absorber, the regulating mechanism between the stepper motor and the designed gas-filled adjustable shock absorber is established. Subsequently, the sliding mode control algorithm is applied to generate the desired damping force with the real-time state of the vehicle. Moreover, to predetermine the road profile for the rear wheel, a two-point wheelbase preview approach is proposed and its superiority is also illustrated as compared with the conventional single-point wheelbase preview approach. To evaluate the performance of the proposed system, numerical analysis is conducted with other three comparative schemes, namely, passive suspension system, active suspension system with H infinity control, and sliding mode control–controlled semi-active air suspension system with adjustable shock absorber. Simulation results show that the integrated sliding mode control–two-point wheelbase preview strategy can be successfully utilized in the semi-active air suspension system with stepper motor-driven gas-filled adjustable shock absorber, and the vehicle performance with the proposed system can be greatly improved.


Author(s):  
Tao Xu ◽  
Youqun Zhao ◽  
Fen Lin ◽  
Qiuwei Wang

For the purpose of anti-puncture and lightweight, a new type of mechanical elastic wheel (MEW) is constructed. However, the large radial stiffness of MEW has a negative effect on ride comfort. To make up for the disadvantage, this paper proposes a novel control strategy consisting of backstepping control and integral sliding-mode control, considering the uncertainties of active suspension and MEW. First, an active suspension system matching MEW is established, discussing the impact of uncertainties. The nonlinear radial characteristic of MEW is fitted based on the previous experiment results. Then, in order to derive ideal motions, an ideal suspension system combining sky-hook and ground-hook damping control is introduced. Next, ignoring the nonlinear characteristics and external random disturbance, a backstepping controller is designed to track ideal variables. Combined with the backstepping control law, an integral sliding-mode control strategy is given, further taking parameter uncertainty and external disturbance into account. To tackle chattering problem, an adaptive state variable matrix is applied. By using Lyapunov stability theory, the whole scheme proves to be robust and convergent. Finally, co-simulations with Carsim and MATLAB/Simulink are carried out. By analyzing the simulation results, it can be concluded that the vehicle adopting backstepping sliding-mode control performs best, with excellent real-time performance and robustness.


2021 ◽  
Vol 11 (22) ◽  
pp. 10925
Author(s):  
Gang Li ◽  
Zhiyong Ruan ◽  
Ruiheng Gu ◽  
Guoliang Hu

In order to reduce vehicle vibration during driving conditions, a fuzzy sliding mode control strategy (FSMC) for semi-active air suspension based on the magnetorheological (MR) damper is proposed. The MR damper used in the semi-active air suspension system was tested and analyzed. Based on the experimental data, the genetic algorithm was used to identify the parameters of the improved hyperbolic tangent model, which was derived for the MR damper. At the same time, an adaptive neuro fuzzy inference system (ANFIS) was used to build the reverse model of the MR damper. The model of a quarter vehicle semi-active air suspension system equipped with a MR damper was established. Aiming at the uncertainty of the air suspension system, fuzzy control was used to adjust the boundary layer of the sliding mode control, which can effectively suppress the influence of chattering on the control accuracy and ensure system stability. Taking random road excitation and impact road excitation as the input signal, the simulation analysis of passive air suspension, semi-active air suspension based on SMC and FSMC was carried out, respectively. The results show that the semi-active air suspension based on FSMC has better vibration attenuating performance and ride comfort.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


Sign in / Sign up

Export Citation Format

Share Document