A deep learning model for joint prediction of three-dimensional ocean temperature, salinity and flow fields

Author(s):  
Qianlong Jin ◽  
Yu Tian ◽  
Qiming Sang ◽  
Shijie Liu ◽  
Jiancheng Yu ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kriti Mahajan ◽  
Urvashi Garg ◽  
Mohammad Shabaz

The existing work on unsupervised segmentation frequently does not present any statistical extent to estimating and equating procedures, gratifying a qualitative calculation. Furthermore, regardless of the datum that enormous research is dedicated to the advancement of a novel segmentation approach and upgrading the deep learning techniques, there is an absence of research comprehending the assessment of eminent conventional segmentation methodologies for HSI. In this paper, to moderately fill this gap, we propose a direct method that diminishes the issues to some extent with the deep learning methods in the arena of a HSI space and evaluate the proposed segmentation techniques based on the method of the clustering-based profound iterating deep learning model for HSI segmentation termed as CPIDM. The proposed model is an unsupervised HSI clustering technique centered on the density of pixels in the spectral interplanetary space and the distance concerning the pixels. Furthermore, CPIDM is a fully convolutional neural network. In general, fully convolutional nets remain spatially invariant preventing them from modeling position-reliant outlines. The proposed network maneuvers this by encompassing an innovative position inclined convolutional stratum. The anticipated unique edifice of deep unsupervised segmentation deciphers the delinquency of oversegmentation and nonlinearity of data due to noise and outliers. The spectrum efficacy is erudite and incidental from united feedback via deep hierarchy with pooling and convolutional strata; as a consequence, it formulates an affiliation among class dissemination and spectra along with three-dimensional features. Moreover, the anticipated deep learning model has revealed that it is conceivable to expressively accelerate the segmentation process without substantive quality loss due to the existence of noise and outliers. The proposed CPIDM approach outperforms many state-of-the-art segmentation approaches that include watershed transform and neuro-fuzzy approach as validated by the experimental consequences.


2017 ◽  
Author(s):  
Amirhossein Tavanaei ◽  
Nishanth Anandanadarajah ◽  
Anthony Maida ◽  
Rasiah Loganantharaj

AbstractWhile cancer is a heterogeneous complex of distinct diseases, the common underlying mechanism for uncontrolled tumor growth is due to mutations in proto-oncogenes and the loss of the regulatory function of tumor suppression genes. In this paper we propose a novel deep learning model for predicting tumor suppression genes (TSGs) and proto-oncogenes (OGs) from their Protein Data Bank (PDB) three dimensional structures. Specifically, we develop a convolutional neural network (CNN) to classify the feature map sets extracted from the tertiary protein structures. Each feature map set represents particular biological features associated with the atomic coordinates appearing on the outer surface of protein’s three dimensional structure. The experimental results on the collected dataset for classifying TSGs and OGs demonstrate promising performance with 82.57% accuracy and 0.89 area under ROC curve. The initial success of the proposed model warrants further study to develop a comprehensive model to identify the cancer driver genes or events using the principle cancer genes (TSG and OG).


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document