Finite-time tracking for underactuated vehicles with parametric uncertainties

Author(s):  
Xiuli Wang ◽  
Bin Jiang ◽  
Ningyun Lu
2020 ◽  
Vol 53 (2) ◽  
pp. 8456-8461
Author(s):  
Dmitrii Dobriborsci ◽  
Sergey Kolyubin ◽  
Natalia Gorokhova ◽  
Marina Korotina ◽  
Alexey Bobtsov

Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


2020 ◽  
Vol 10 (18) ◽  
pp. 6447
Author(s):  
Mingyu Fu ◽  
Lulu Wang

This paper develops a finite-time path following control scheme for an underactuated marine surface vessel (MSV) with external disturbances, model parametric uncertainties, position constraint and input saturation. Initially, based on the time-varying barrier Lyapunov function (BLF), the finite-time line-of-sight (FT-LOS) guidance law is proposed to obtain the desired yaw angle and simultaneously constrain the position error of the underactuated MSV. Furthermore, the finite-time path following constraint controllers are designed to achieve tracking control in finite time. Additionally, considering the model parametric uncertainties and external disturbances, the finite-time disturbance observers are proposed to estimate the compound disturbance. For the sake of avoiding the input saturation and satisfying the requirements of finite-time convergence, the finite-time input saturation compensators were designed. The stability analysis shows that the proposed finite-time path following control scheme can strictly guarantee the constraint requirements of the position, and all error signals of the whole control system can converge into a small neighborhood around zero in finite time. Finally, comparative simulation results show the effectiveness and superiority of the proposed finite-time path following control scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Meng-Meng Jiang ◽  
Xue-Jun Xie

Under the weaker assumption on nonlinear functions, the adaptive finite-time stabilization of more general high-order nonlinear systems with dynamic and parametric uncertainties is solved in this paper. To solve this problem, finite-time input-to-state stability (FTISS) is used to characterize the unmeasured dynamic uncertainty. By skillfully combining Lyapunov function, sign function, backstepping, and finite-time input-to-state stability approaches, an adaptive state feedback controller is designed to guarantee high-order nonlinear systems are globally finite-time stable.


Author(s):  
Jesús GUERRERO ◽  
Julio GONZÁLEZ ◽  
Martin CHIMAL

In this paper, an adaptive temperature controller for the plastic extrusion process is designed. The proposed controller aims to solve the set-point regulation problem and the temperature trajectory tracking of a plastic extrusion process. The controller is an adaptive version of the First Sliding Mode Control which is robust towards parametric uncertainties and external disturbances. Also, the finite time convergence is demonstrated by Lyapunov arguments. Finally, the effectiveness of the proposed controller under several scenarios is demonstrated by computer simulations.


Sign in / Sign up

Export Citation Format

Share Document